A WARNING To prevent serious injury or death: - 1- Lock-out/tag-out before performing maintenance. - 2- If system power is required (e.g., smoke detector maintenance), disable power to blower, remove fan belt where applicable, and ensure all controllers and thermostats are set to the "OFF" position before performing maintenance. - 3- Always keep hands, hair, clothing, jewelry, tools, etc., away from moving parts. | Table of Contents | |---| | Dimensions | | Parts Arrangement | | Shipping and Packing List 6 | | General | | Requirements | | Unit Support | | Duct Connection | | Rigging Unit for Lifting | | Horizontal Air Discharge | | Condensate Drains | | Connect Gas Piping (Gas Units) | | Pressure Test Gas Piping | | High Altitude Derate | | Electrical Connections - Power Supply | | Electricla Connections - Control Wiring | | Balance Point Setpoint | | Unit Power Up | | Mobile Service App | | Blower Operation and Adjustments | | Refrigerant Leak Detection System | | Start-Up | ## INSTALLATION INSTRUCTIONS LHT/LDT036 (3 TON) LHT/LDT048 (4 TON) LHT/LDT060 (5 TON) LHT/LDT072 (6 TON) ## HEAT PUMP AND DUAL-FUEL PACKAGED UNITS 508455-01 | 4/2024 | | | h | <- | -4 | |)4 | 4B | |------------------------------------|------|--|---|----|----|---|----|-----------| | Defrost Control | | | | | | _ | | .31 | | Diagnostic Sensors | | | | | | | | .32 | | RDS Sensors | | | | | | | | .35 | | Cooling Operation | | | | | | | | .37 | | Heating Operation | | | | | | | | .38 | | Gas Heat Start-Up (LDT Units) . | | | | | | | | | | Heating Operation and Adjustmer | nts | | | | | | | .40 | | Electric Heat Start-Up (LHT Units) |) . | | | | | | | .40 | | SCR Electric Heat Controller (LH | | | | | | | | | | Preventative Maintenance / Repa | ir . | | | | | | | .41 | | Factory Unit Controller Settings. | | | | | | | | .53 | | Decommissioning | | | | | | | | 53 | ## **A WARNING** Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional HVAC installer or equivalent, service agency, or the gas supplier. #### RETAIN THESE INSTRUCTIONS FOR FUTURE REFERENCES ### **Attention!** Use this QR code to download the mobile service app. Follow the prompts to pair the app with the unit control system and configure the unit. Refer to the "Download Mobile App" section in this manual and the Setup Guide provided with this unit. The QR code is also available in the unit control area. The app can be downloaded from the appropriate iOS or Android store. Look for the following icon. ## **A** CAUTION As with any mechanical equipment, contact with sharp sheet metal edges can result in personal in jury. Take care while handling this equipment and wear gloves and protective clothing. ## **A WARNING** Only manufacturer approved auxiliary devices are permitted to be installed in this unit. ### WARNING If this appliance is conditioning a space with an area smaller than TAmin or stored in a space with an area smaller than Amin as defined by this instruction, then that space must be without continuously operating open flames (e.g. an operating gas appliance) or other potential ignition sources (e.g. an operating electric heater or similar hot surface). A flame-producing device may be installed in the same space if the device is provided with an effective flame arrest system. ### **▲** CAUTION Auxiliary devices which may be a potential ignition source shall not be installed in the duct work. Examples of such potential ignition sources are hot surfaces with a temperature exceeding 700°C and electric switching devices. ### **▲** CAUTION The appliance is not to be used by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction ## **A** CAUTION Children should be supervised not to play with the appliance. ## **A** CAUTION Any personnel installing, decommissioning, or performaing maintenance on the unit must be properly trained with A2L refrigerants. ## **▲** CAUTION Servicing shall be performed only as recommended by the manufacturer. ## WARNING - •This appliance must be installed in accordance with local and national wiring regulations. - •If the appliance is not fitted with an option for full disconnection from power, a means of disconnection must be incorporated in the fixed wiring in accordance with national and local wiring regulations. ### **A** CAUTION Leak Detection System installed. Unit must be powered except for service. ## WARNING - •Do not use means to accelerate the defrosting process or to clean, other than those recommended by the manufacturer. - •The appliance shall be stored in a room without continuously operating ignition sources (for example: open flames, an operating gas appliance, or an operating electric heater). - •Do not pierce or burn. - •Be aware that refrigerants may not contain an odor ## **▲** CAUTION Any personnel installing, decommissioning, or performingmaintenance on the unit must be properly trained with A2L refrigerants. ## **▲** IMPORTANT Pipe work, including piping material, pipe routing, and installation shall include protection from physical damage in operation and service, and be in compliance with national and local codes and standards, such as ASHRAE 15, ASHRAE 15.2, IAPMO Uniform Mechanical Code, ICC International Mechanical Code, or CSA B52. All field joints shall be accessible for inspection prior to being covered or enclosed. ## **A IMPORTANT** Refrigerant sensors for refrigerant detection systems shall only be replaced with sensors specified by the appliance manufacture. ## CAUTION This unit is equipped with electrically powered safety measures. To be effective, the unit must be electrically powered at all times after installation, other than when servicing. #### **A2L Refrigerant Considerations** Ensure that the area is in the open or that it is adequately ventilated before breaking into the system or conducting any hot work. A degree of ventilation shall continue during the period that the work is carried out. The ventilation should safely disperse any released refrigerant and preferably expel it externally into the atmosphere. Check that cabling will not be subject to wear, corrosion, excessive pressure, vibration, sharp edges or any other adverse environmental effects, taking into account the effects of aging or continual vibration from sources such as compressors or fans. Under no circumstances shall potential sources of ignition be used when searching for or detection of refrigerant leaks. A halide torch (or any other detector using a naked flame) shall not be used. Electronic leak detectors may be used to detect refrigerant leaks but, in the case of flammable refrigerants, the sensitivity may not be adequate, or may need re-calibration. (Detection equipment shall be calibrated in a refrigerant-free area.) Ensure that the detector is not a potential source of ignition and is suitable for the refrigerant used. Leak detection equipment shall be set at a percentage of the LFL of the refrigerant and shall be calibrated to the refrigerant employed, and the appropriate percentage of gas (25 % maximum) is confirmed. Leak detection fluids are also suitable for use with most refrigerants but the use of detergents containing chlorine shall be avoided as the chlorine may react with the refrigerant and corrode the copper pipe-work. If a leak is suspected, all naked flames shall be removed/extinguished. If a leakage of refrigerant is found which requires brazing, all of the refrigerant shall be recovered from the system, or isolated (by means of shut off valves) in a part of the system remote from the leak. When breaking into the refrigerant circuit to make repairs – or for any other purpose – conventional procedures shall be used. However, for flammable refrigerants it is important that best practices be followed since flammability is a consideration. The following procedure shall be adhered to: - -Safely remove refrigerant following local and national regulations. - -Evacuate the circuit. - -Purge the circuit with inert gas. - -Evacuate. - -Purge the circuit with inert gas. - -Open the circuit The refrigerant charge shall be recovered into the correct recovery cylinders if venting is not allowed by local and national codes. For appliances containing flammable refrigerants, the system shall be purged with oxygenfree nitrogen to render the appliance safe for flammable refrigerants. This process might need to be repeated several times. Compressed air or oxygen shall not be used for purging refrigerant systems. Refrigerants purging shall be achieved by breaking the vacuum in the system with oxygen-free nitrogen and continuing to fill until the working pressure is achieved, then venting to atmosphere, and finally pulling down to a vacuum. This process shall be vented down to atmospheric pressure to enable work to take place. Ensure that the outlet for the vacuum pump is not close to any potential ignition sources and that ventilation is available. #### LHT/LDT036, 048, 060, 072 DIMENSIONS in. - Gas heat section shown #### LHT036, 048, 060, 072 PARTS ARRANGEMENT #### LDT036, 048, 060, 072 PARTS ARRANGEMENT #### **Shipping and Packing List** #### Package 1 of 1 contains: #### 1 - Assembled unit Check unit for shipping damage. Receiving party should contact last carrier immediately if shipping damage is found #### General These instructions are intended as a general guide and do not supersede local codes in any way. Authorities having jurisdiction should be consulted before installation. The LDT heat pump/gas heating (duel-fuel) packaged rooftop unit is available in 65,000, 108,000, or 150,000 Btuh heating inputs. The LHT heat pump packaged rooftop unit is the same basic design as the LDT unit except for the heating section.
Optional electric heat is factory- or field-installed in LHT units. The LHT/LDT units have 3, 4, 5, and 6-ton cooling capacities. Units are equipped with fin/tube condenser coils, two speed compressors, and variable speed, direct drive blowers. Compressor and supply air speeds adjust to system demand. Availability of units and options varies by brand. #### Requirements See FIGURE 1 for unit clearances. The LDT unit is ETL/CSA certified for outdoor installations only at the clearances to combustible materials listed on unit nameplate and in FIGURE 1. The LHT unit is ETL/CSA certified as a heat pump with cooling and with or without auxiliary electric heat for outdoor installations only at the clearances to combustible materials as listed on the unit nameplate and in FIGURE 1. Installation of LHT/LDT units must conform with standards in National Fire Protection Association (NFPA) "Standard for Installation of Air Conditioning and Ventilating Systems NFPA No. 90A," "Standard for Installation of Residence Type Warm Air Heating and Air conditioning Systems NFPA No. 90B," local municipal building codes and manufacturer's installation instructions. ## **▲** IMPORTANT The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HCFC's) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance. ### WARNING Electric shock hazard and danger of explosion. Can cause injury, death or product or property damage. Turn off gas and electrical power to unit before performing any maintenance or servicing operations on the unit. Follow lighting instructions attached to unit when putting unit back into operation and after service or maintenance. ## **A** NOTICE #### **Roof Damage!** This system contains both refrigerant and oil. Some rubber roofing material may absorb oil, causing the rubber to swell. Bubbles in the rubber roofing material can cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface. ¹ Unit В С D Top in.(mm) | in.(mm) | in.(mm) Clearance Clearance in.(mm) Service Unob-48 36 36 (1219)Clearance (914)(914)(914)structed Clearance to 36 1 Unob-Combustibles (914)(25)(25)(25)structed Minimum Oper-36 36 36 36 Unobation Clearance (914)(914)(914)(914)structed **NOTE -** Entire perimeter of unit base requires support when elevated above mounting surface. Service Clearance - Required for removal of serviceable parts. Clearance to Combustibles - Required clearance to combustible material (gas units). On LCT units, see clearance to combustible materials as outlined on heater rating plate. **Minimum Operation Clearance** - Required clearance for proper unit operation. #### Minimum R454B Space and CFM Requirements | Minimum Airflow¹ | | | | | |------------------|------------------------|------------------------|--|--| | Unit | Q _{min} (CFM) | Q _{min} (m³h) | | | | LDT/LHT036 | 360 | 610 | | | | LDT/LHT048 | 369 | 626 | | | | LDT/LHT060 | 427 | 725 | | | | LDT/LHT072 | 361 | 612 | | | | ¹ NOTE - The minimum airflow is the lowest CFM allowed during venting | g | |--|---| | operation (leak mitigation). | | | Minimum Room Area of Conditioned Space ² | | | | | |---|-------------------------|------------------------|--|--| | Unit | TA _{min} (ft²) | TA _{min} (m²) | | | | LDT/LHT036 | 198.68 | 18.46 | | | | LDT/LHT048 | 204.17 | 18.97 | | | | LDT/LHT060 | 236.21 | 21.94 | | | | LDT/LHT072 | 199.59 | 18.54 | | | ² **NOTE -** The minimum room area of conditioned space is the smallest area the unit can service. | Refrigerant Charge R-454B | | | | | | |---------------------------|----------------------|---------------------|--|--|--| | Unit | M _c (lbs) | M _c (kg) | | | | | LDT/LHT036 | 13.56 | 6.15 | | | | | LDT/LHT048 | 13.94 | 6.32 | | | | | LDT/LHT060 | 16.13 | 7.31 | | | | | LDT/LHT072 | 13.63 | 6.18 | | | | | | Altitude Adjustment Factor³ | | | | | | | | | |------|-----------------------------|------|------|------|------|------|------|------|------| | Halt | 0 | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600 | | AF | 1 | 1 | 1 | 1 | 1.02 | 1.05 | 1.04 | 1.1 | 1.12 | | Halt | 1600 | 1800 | 2000 | 2200 | 2400 | 2600 | 2800 | 3000 | 3200 | | AF | 1.12 | 1.15 | 1.18 | 1.21 | 1.25 | 1.28 | 1.32 | 1.36 | 1.4 | ³ **NOTE** - Use the Altitude Adjustment Factor to adjust the values in the tables above to different altitudes. Find the relevant altitude above sea level in the two "Halt" rows and then multiply the value needed from the tables above by the altitude factor number. Example: For the minimum airflow in CFM for an LDT/LHT036 at 1000 ft. above see level, multiply 360 by 1.05 to get 378 CFM as the new Q_{min}. Use of this unit as a construction heater or air conditioner is not recommended during any phase of construction. Very low return air temperatures, harmful vapors and operation of the unit with clogged or misplaced filters will damage the unit. If this unit has been used for heating or cooling of buildings or structures under construction, the following conditions must be met or the warranty will be void: - A room thermostat must control the unit. The use of fixed jumpers that will provide continuous heating or cooling is not allowed. - A pre-filter must be installed at the entry to the return air duct. - The return air duct must be provided and sealed to the unit. - Return air temperature range between 55°F (13°C) and 80°F (27°C) must be maintained. - Air filters must be replaced and pre-filters must be removed upon construction completion. - The input rate and temperature rise must be set per the unit rating plate. - The heat exchanger, components, duct system, air filters and evaporator coil must be thoroughly cleaned following final construction clean-up. - The unit operating conditions (including airflow, cooling operation, ignition, input rate, temperature rise and venting) must be verified according to these installation instructions. This appliance is not intended for use by persons (including children) with reduced physical, sensory, or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety. #### **Unit Support** In downflow discharge installations, install the unit on a non-combustible surface only. Unit may be installed on combustible surfaces when used in horizontal discharge applications or in downflow discharge applications when installed on an T1CURB / C1CURB / E1CURB roof mounting frame. **NOTE -** Securely fasten roof frame to roof per local codes. ## **A** CAUTION To reduce the likelihood of supply / return air by pass and promote a proper seal with the RTU, duct work / duct drops / diffuser assemblies must be supported independently to the building structure. #### **A-Downflow Discharge Application** #### Roof Mounting with T1CURB / C1CURB / E1CURB - 1 The roof mounting frame must be installed, flashed and sealed in accordance with the instructions provided with the frame. - 2 The roof mounting frame should be square and level to 1/16" per linear foot (5mm per linear meter) in any direction. - 3 Duct must be attached to the roof mounting frame and not to the unit; supply and return plenums must be installed before setting the unit. #### **Installer's Roof Mounting Frame** Many types of roof frames can be used to install the unit depending upon different roof structures. Items to keep in mind when using the building frame or supports are: - 1 The base is fully enclosed and insulated, so an enclosed frame is not required. - 2 The frames or supports must be constructed with non-combustible materials and should be square and level to 1/16" per linear foot (5mm per linear meter) in any direction. - 3 Frame or supports must be high enough to prevent any form of moisture from entering unit. Recommended minimum frame height is 14" (356mm). - 4 Duct must be attached to the roof mounting frame and not to the unit. Supply and return plenums must be installed before setting the unit. - 5 Units require support along all four sides of unit base. Supports must be constructed of steel or suitably treated wood materials. **NOTE -** When installing a unit on a combustible surface for downflow discharge applications, a T1CURB / C1CURB / E1CURB roof mounting frame is required. #### **B-Horizontal Discharge Applications** - Units which are equipped with an optional economizer and installed in horizontal airflow applications must use a horizontal conversion kit. - Specified installation clearances must be maintained when installing units. Refer to FIGURE 1. - 3 Top of support slab should be approximately 4" (102mm) above the finished grade and located so no run-off water from higher ground can collect around the unit. - 4 Units require support along all four sides of unit base. Supports must be constructed of steel or suitably treated wood materials. #### **Duct Connection** All exterior ducts, joints and openings in roof or building walls must be insulated and weather-proofed with flashing and sealing compounds in accordance with applicable codes. Any duct passing through an unconditioned space must be insulated. ## **A** CAUTION In downflow applications, do not drill or punch holes in base of unit. Leaking in roof may occur if unit base is punctured. #### **Rigging Unit for Lifting** Rig unit for lifting by attaching four cables to holes in unit base rail. See FIGURE 2. - 1 Detach wooden base protection before rigging. - 2 Remove all six base protection brackets before setting unit. - 3 Connect rigging to the unit base using both holes in each corner. - 4 All panels must be in place for rigging. - 5 Place field-provided H-style pick in
place just above top edge of unit. Frame must be of adequate strength and length. (H-style pick prevents damage to unit.) **Horizontal Air Discharge** Unit is shipped with panels covering the horizontal supply and return air openings. Remove horizontal covers and place over downflow openings for horizontal air discharge. See FIGURE 3. Secure in place with sheet metal screws. #### **Units Equipped With An Optional Economizer** - Remove the horizontal supply air cover and position over the downflow supply air opening. Secure with sheet metal screws. - 2 Leave the horizontal return air cover in place. - 3 Locate the separately ordered horizontal air discharge kit. Place the kit panel over the downflow return air opening. - 4 Remove and retain the barometric relief dampers and lower hood. FIGURE 3 5 - Install return air duct beneath outdoor air intake. See FIGURE 4. Install barometric relief damper in lower hood and install in ductwork as shown in FIGURE 4. FIGURE 4 #### **Condensate Drains** Make drain connection to the drain coupling provided on unit. Older model units have a 3/4" N.P.T. coupling and newer model units have a 1" N.P.T. coupling. **NOTE** - The drain pan is made with a glass reinforced engineered plastic capable of withstanding typical joint torque but can be damaged with excessive force. Tighten pipe nipple hand tight and turn an additional quarter turn. A trap must be installed between drain connection and an open vent for proper condensate removal. See FIGURE 5 or FIGURE 6. It is sometimes acceptable to drain condensate onto the roof or grade; however, a tee should be fitted to the trap to direct condensate downward. The condensate line must be vented. Check local codes concerning condensate disposal. Refer to page 1 and page 4 for condensate drain location. Units are shipped with the drain coupling facing the front of the unit. Condensate can be drained from the back or bottom of the unit with the following modifications. The unit can be installed in either downflow or horizontal air discharge regardless of condensate drain location. #### **Rear Drain Connection** 1 - Remove the condensate drain mullion. See FIGURE7. Remove the two panels on each side of the mullion. FIGURE 7 Two hinge screws must be removed in addition to the mullion screws. See FIGURE 8. Lift the front edge of the drain pan and slide pan out of unit. See FIGURE 9. FIGURE 9 - 3 Make sure the cap over the unit bottom drain hole is secure. - 4 Rotate the drain pan until the downward slope is toward the back of the unit. Slide the drain pan back into the unit. Be careful not to dislodge the cap over the bottom drain hole. - 5 From the back side of the unit, pull the drain pan coupling through the rear condensate opening. - 6 Replace the condensate drain mullion. #### **Bottom Drain Connection** - Remove the condensate drain mullion. See FIGURE 7. - Lift the front edge of the drain pan and slide pan out of unit. See FIGURE 9. - 3 Turn the drain pan upside down and drill a pilot hole through the bottom of the drain pan in the center of the coupling. See FIGURE 10. FIGURE 10 - 4 From the inside of the pan, use a Vari-Bit® bit to enlarge the hole to 7/8". Do not damage coupling threads. - 5 Remove the cap over the unit bottom drain hole. - 6 Slide the drain pan back into the unit. - 7 From the back side of the unit, pull the drain pan coupling through the rear condensate opening. - 8 From the front side of the unit, move the drain pan until the bottom coupling settles into the unit bottom drain opening. Once in place, check to make sure the coupling is still positioned through the rear condensate drain hole. - 9 Use a field-provided 3/4" plug to seal side drain connection. - 10 -Replace the condensate drain mullion. #### **Connect Gas Piping (Gas Units)** Before connecting field-provided piping, check with gas company or authorities having jurisdiction for local code requirements. When installing gas supply piping, length of run from gas meter must be considered in determining pipe size for 0.5" w.c. (.12kPa) maximum pressure drop. Do not use supply pipe smaller than unit gas connection. Operating pressures at the unit gas connection must be as shown in TABLE 1. TABLE 1 OPERATING PRESSURE AT GAS CONNECTON w.c. | | Natura | al Gas | LP/Prop | ane Gas | |---------|--------|-----------|---------|---------| | | Min. | Min. Max. | | Max. | | 036-072 | 4.5 | 10.5 | 11 | 13 | When making piping connections a drip leg should be installed on vertical pipe runs to serve as a trap for sediment or condensate. A 1/8" N.P.T. plugged tap is located on gas valve for test gauge connection. Refer to Heating Start-Up section for tap location. Install a ground joint union between the gas control manifold and the main manual shut-off valve. See FIGURE 11 for gas supply piping entering outside the unit. FIGURE 12 shows complete bottom gas entry piping. Compounds used on threaded joints of gas piping shall be resistant to the action of liquefied petroleum gases. Do not use Teflon® tape to seal gas piping. Use a moderate amount of pipe compound on the gas pipe only. Make sure the two end threads are bare. ## **▲** CAUTION If a flexible gas connector is required or allowed by the authority that has jurisdiction, black iron pipe shall be installed at the gas valve and extend out side the furnace cabinet. ## **A WARNING** Do not exceed 600 in-lbs (50 ft.-lbs) torque when attaching the gas piping to the gas valve. ## IMPORTANT Compounds used on threaded joints of gas piping must be resistant to the actions of liquefied petroleum gases. FIGURE 11 FIGURE 12 #### **Pressure Test Gas Piping** When pressure testing gas lines, the gas valve must be disconnected and isolated. Gas valves can be damaged if subjected to more than 0.5 psig (3.48kPa). See FIGURE 13. **NOTE** - Codes may require that manual main shut-off valve and union (furnished by installer) be installed in gas line external to unit. Union must be of the ground joint type. After all connections have been made, check all piping connections for gas leaks. Also check existing unit gas connections up to the gas valve; loosening may occur during installation. Use a leak detection solution or other preferred means. Do not use matches candles or other sources of ignition to check for gas leaks. ### **▲** CAUTION Some soaps used for leak detection are corrosive to certain metals. Carefully rinse piping thoroughly after leak test has been completed. Do not use matches, candles, flame or other sources of ignition to check for gas leaks. ## **▲ WARNING** Danger of explosion. Can cause injury or product or property damage. Do not use matches, candles, flame or other sources of ignition to check for leaks. **NOTE -** In case emergency shut down is required, turn off the main manual shut-off valve and disconnect main power to unit. These devices should be properly labeled by the installer. FIGURE 13 #### **High Altitude Derate** Locate the high altitude conversion sticker in the unit literature bag. Fill out the conversion sticker and affix next to the unit nameplate. High altitude kits are available for field-installation. Refer to TABLE 2 for high altitude adjustments. #### TABLE 2 HIGH ALTITUDE DERATE | Altitude Ft.* | Gas manifold Pressure | |----------------|--------------------------------------| | 2000-4500 | See Unit Nameplate | | 4500 and Above | Derate 2% / 1000 Ft. above Sea Level | ^{*}Units installed at 0-2000 feet do not need to be modified. **NOTE -** This is the only permissible derate for these units. #### **Electrical Connections** - Power Supply Do not apply power or close disconnect switch until installation is complete. Refer to start-up directions. Refer closely to unit wiring diagram. Refer to unit nameplate for minimum circuit ampacity and maximum fuse size. - 1 Units are factory-wired for 230 / 460 / 575 volt supply. For 208V supply, remove the insulated terminal cover from the 208V terminal on the control transformer. - Move the wire from the transformer 240V terminal to the 208V terminal. Place the insulated terminal cover on the unused 240V terminal. - 2 Route power through the bottom power entry area and connect to L1, L2, and L3 on the top of K1 in control area above compressor. Secure power wiring with factory-installed wire ties provided in control box. Route power to TB2 on units equipped with electric heat. Route power to S48 or CB10 If unit is equipped with the optional disconnect switch or circuit breaker. See unit wiring diagram. #### **Electrical Connections - Control Wiring** **NOTE -** Optional wireless sensors are available for use with this unit. Refer to the instructions provided with each sensor. ## **▲** CAUTION Electrostatic discharge can affect electronic components. Take precautions during unit installation and service to protect the electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the unit, the control and the technician at the same electrostatic potential. Neutralize electrostatic charge by touching hands and all tools on an unpainted unit surface, such as the gas valve or blower deck, before per forming any service procedure. #### A-Thermostat Location Room thermostat mounts vertically on a standard 2" X 4" handy box or on any non-conductive flat surface. Locate thermostat approximately 5 feet (1524mm) above the floor in an area with good air circulation at average temperature. Avoid locating the room thermostat where it might be affected by: - · drafts or dead spots behind doors and in corners - · hot or cold air from ducts - radiant heat from sun or appliances - · concealed pipes and chimneys #### **B-Control Wiring** The Unit Controller will operate the unit from a thermostat or zone sensor based on the System Mode. The default System Mode is the thermostat mode. Refer to the Unit Controller Setup Guide to change the System Mode. Use the mobile service app menu and select *Settings > Install*. ####
Thermostat Mode Route thermostat cable or wires from subbase to control area above compressor (refer to unit dimensions to locate bottom and side power entry). IMPORTANT - Unless field thermostat wires are rated for maximum unit voltage, they must be routed away from line voltage wiring. Use wire ties located near the lower left corner of the controls mounting panel to secure thermostat cable. - Use18 AWG wire for all applications using remotely installed electro-mechanical and electronic thermostats. - 2 Install thermostat assembly in accordance with instructions provided with thermostat. - 3 Connect thermostat wiring to Unit Controller on the lower side of the controls hat section. - 4 Wire as shown in FIGURE 14 for electro-mechanical and electronic thermostats. If using other temperature control devices or energy management systems see instructions and wiring diagram provided by manufacturer. IMPORTANT - Terminal connections at the wall plate or subbase must be made securely. Loose control wire connections may allow unit to operate but not with proper response to room demand. #### **Zone Sensor Mode** The Unit Controller will operate heating and cooling based on the Unit Controller internal setpoints and the temperature from the A2 zone sensor. An optional Network Control Panel (NCP) can also be used to provide setpoints. A thermostat or return air sensor can be used as a back-up mode. Make zone sensor wiring connections as shown in FIGURE 15. FIGURE 14 Balance Point Setpoint When outdoor air temperature is above setpoint (35°F default), the unit will operate in heat pump mode. When outdoor air temperature falls below setpoint, the unit will operate in gas heat mode. **NOTE -** Only stage one is used; stage 2 is not used. Although the recommended balance point setpoint is 35°F, the setpoint can be adjusted. Weigh the comfort / cost benefit when increasing the setpoint. #### **Unit Power-Up** #### A-General - 1 Make sure that unit is installed in accordance with the installation instructions and applicable codes. - 2 Inspect all electrical wiring, both field and factory installed, for loose connections. Tighten as required. - 3 Check to ensure that refrigerant lines do not rub against the cabinet or against other refrigerant lines. - 4 Check voltage at main unit power connection. Voltage must be within range listed on nameplate. If not, consult power company and have voltage condition corrected before starting unit. - 5 Make sure filters are in place before start-up. - 6 Make sure there is no heating, cooling, or blower demand from thermostat. Apply power to unit. #### **Mobile Service App** Setup and configure each rooftop unit using the mobile service app (Android or iOS devices supported). #### **A-Mobile Device Requirements** - Bluetooth connection. - Android hardware requires 2GB RAM and a 2Ghz core processor. Tablets are supported. - The app is available for both iOS 11.0 or higher (App Store) and Android 9.0 or higher (Google Play). #### **B-Download the App** Use your mobile device to scan the QR code from the cover page and download the mobile service app to your mobile device. #### C-Pair the App to the Unit Controller - 1 Apply power to the unit and wait until the Unit Controller has booted-up (approximately two minutes). - 2 Press and hold the pair button for five seconds. See FIGURE 17. - 3 The unit (or list of units) will appear; select the appropriate unit. When the app code matches the four-character code on the Unit Controller display, the unit is paired (within 10 seconds). Note the following: - The app will list the units by signal strength; the RTU name will be displayed. - Once paired, the RTU name, model number, serial number and firmware version will be displayed. Please refer to the manufacturer's website for additional technical information and self-help support. #### **D-App Menus** See FIGURE 16 for the menu overview. Follow the app prompts in the Install, Network Integration, and Test and Balance menus. Verify the app is setup properly for the unit application (including the date and time). Refer to FIGURE 18, FIGURE 19, and FIGURE 20. FIGURE 16 FIGURE 17 #### FIGURE 18 FIGURE 19 FIGURE 20 #### **E-Unit Controller Components** See FIGURE 21 for Unit Controller components. See FIGURE 22 and TABLE 3 for pushbutton and LED functions. FIGURE 21 FIGURE 22 TABLE 3 | UNIT CONTROLLER PUSHBUTTON CODES | | | | | | |----------------------------------|---|----------------|--|--|--| | Code | Cause | Action | | | | | CLdL | Black Button: Short
Press | Clear Delays | | | | | rSt | Black Button: Long
Press | Reset | | | | | tESt | White Button: Short Press | TSTAT Test | | | | | StAt | White Button: Long
Press (In Pre-Install
state) | TSTAT Override | | | | | tESt | White Button: Long
Press (NOT in
Pre-Install State) | TSTAT Test | | | | | Short Press : 2 to 5 se | conds. | | | | | Long Press : 5 to 8 seconds. #### **Blower Operation and Adjustments** ## **▲** IMPORTANT Three phase scroll compressors must be phased sequentially for correct compressor and blower rotation. Follow "COOLING START-UP" section of installation instructions to ensure proper compressor and blower operation. #### **A-Blower Operation** Refer to the Unit Controller Setup Guide to energize blower. Use the mobile service app menu; see: ## RTU MENU>COMPONENT TEST>BLOWER>START TEST ## WARNING - 1- Make sure that unit is installed in accordance with the installation instructions and applicable codes. - 2- Inspect all electrical wiring, both field and factory-installed, for loose connections. Tighten as required. - 3- Check to ensure that refrigerant lines do not rub against the cabinet or against other refrigerant lines. - 4- Check voltage at disconnect switch. Voltage must be within range listed on nameplate. If not, consult power company and have voltage condition corrected before starting unit. - 5- Make sure filters are new and in place before start-up. Direct-drive motor may not immediately stop when power is interrupted to the Unit Controller. Disconnect unit power before opening the blower compartment. The Controller's digital inputs must be used to shut down the blower. See Unit Controller manual for operation sequences. #### **B-Determining Unit CFM** - 1 The following measurements must be made with air filters in place. - 2 With all access panels in place, measure static pressure external to unit (from supply to return). Blower performance data is based on static pressure readings taken in locations shown in FIGURE 23. **NOTE** - Static pressure readings can vary if not taken where shown. - 3 Measure the indoor blower wheel RPM. - 4 Referring to the Blower Data tables, use static pressure and RPM readings to determine unit CFM. Use the Accessory Air Resistance tables when installing units with any of the options or accessories listed. Refer to TABLE 4 for minimum airflow when electric heat is installed. FIGURE 23 5 - From the mobile service app, use TEST & BAL-ANCE > BLOWER menu to modify the following blower parameters: #### HEATING HIGH CFM This is the percentage of torque for blower heating speed. #### HEATING LOW CFM This is the percentage of torque for blower heating low speed on single phase gas heating units only. #### COOLING HIGH CFM This is the percentage of torque for blower cooling high speed. #### COOLING LOW CFM This is the percentage of torque for blower cooling low speed and vent speed for standard static blowers (all units). #### VENTILATION CFM This is the percentage of torque for high static blower ventilation speed. TABLE 4 ELECTRIC HEAT MINIMUM AIRFLOW | kW | | CFM | |------|--------------|-------------------------------| | KVV | Direct Drive | Direct Drive (Impeller Style) | | 7.5 | 600 | 1200 | | 15 | 1100 | 1500 | | 22.5 | 1600 | 2000 | #### **C-Adjusting Unit CFM** The supply CFM can be adjusted by changing Unit Controller settings. Refer to TABLE 5 for menu paths and default settings. Record any CFM changes on the parameter settings label located on the inside of the compressor access panel. IMPORTANT - The default value for Cooling Low CFM is lower than a traditional singe- or two-speed blower. If operating the unit with a 2 or 3-stage controller (2 or 3-stage thermostat, DDC controller, etc.), it is recommended to increase the Cooling Low CFM default value to a suitable level for part load cooling (typically 60% of full load CFM). ## TABLE 5 DIRECT DRIVE PARAMETER SETTINGS - 581102-01 | 036-072 Parameter Settings | | | | | | |---|---------------|--|--|--|--| | Parameter | Field Setting | Description | | | | | NOTE - Any changes to Smoke CFM setting must be adjusted before the other CFM settings. Use SETTINGS > RTU OPTIONS > EDIT PARAM | | | | | | | TERS = 12 for EBM, 6 for ECM | | | | | | | BLOWER SMOKE CFM | % | Percentage of torque for blower smoke speed | | | | | SETUP > TEST & BALANCE > BLOWE | R | | | | | | BLOWER HEATING HIGH CFM | % | Percentage of torque for blower heating high speed. | | | | | BLOWER HEATING LOW CFM | % | Percentage of torque for blower heating low speed (P volt gas heat only). | | | | | BLOWER COOLING HIGH CFM | % | Percentage of torque for blower cooling high speed. | | | | | BLOWER COOLING LOW CFM | % | Percentage of torque for blower cooling low speed and vent speed for standard static blowers. | | | | | BLOWER VENTILATION CFM | % | Percentage of torque for high static blower ventilation speed. | | | | | SETUP > TEST & BALANCE > DAMPE | R | | | | | | BLOWER HIGH CFM DAMPER POS % | % | Minimum damper position for high speed blower operation. Default 0%. | | | | | BLOWER LOW CFM DAMPER POS % | % | Minimum damper position for low speed blower operation.
Default 0%. | | | | | POWER EXHAUST DAMPER POS % | % | Minimum damper position for low power exhaust operation. Default 50%. | | | | | SETTINGS > RTU OPTIONS > EDIT PARAMETERS = 216 | | | | | | | POWER EXHAUST DEADBAND % Deadband % for power exhaust operation. Default 10%. | | | | | | | SETTINGS > RTU OPTIONS > EDIT PARAMETERS = 10 (Applies to Thermostat Mode ONLY) | | | | | | | FREE COOLING STAGE-UP DELAY | % | Number of seconds to hold blower at low speed before switching to blower at high speed. Default 300 seconds. | | | | **Installer -** Record any parameter changes under "Field Setting" column. Settings need to be recorded by installer for use when Unit Controller is replaced or reprogrammed. BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: 1-Any factory installed options air resistance (heat section, economizer, etc). 2-Any field installed accessories air resistance (duct resistance, diffuser, etc). Minimum Air Volume Required for Different Gas Heat Sizes: Standard Heat - 1075 cfm; Medium Heat - 1150 cfm; High Heat - 1500 cfm | | • |----------------------|-----|-------|-----|-------|-------|-----|------|-------|------|------|-------|--------|--------|----------------------------------|---------|-------|--------|------|--------|-------|--------|------|-------|------|-------|-------|------| | External | | | | | | | | | | | | ercent | age o | Percentage of Total Motor Torque | Notor 1 | orque | | | | | | | | | | | | | Static | | 20% | П | | 30% | П | | 40% | | | 20% | | | %09 | П | | %02 | П | | %08 | П | | %06 | | | 100% | | | Pressure
in. w.g. | Cfm | Watts | RPM | Cfm V | Watts | RPM | Cfm / | Watts | RPM | Cfm v | Watts | RPM | Cfm | Watts | RPM | Cfm | Watts | RPM | | 0 | 819 | 47 | 403 | 1006 | 16 | 463 | 1192 | 111 | 523 | 1335 | 152 | 573 | 1477 | ⊢ | 622 | 1580 | 236 | | 1682 | 279 | - | 1812 | 353 | 753 | 1876 | 400 | 783 | | 0.1 | 723 | 48 | 485 | 919 | 82 | 539 | 1114 | 116 | _ | 1264 | 159 | _ | 1414 | 202 | 681 | 1522 | 246 | 715 | _ | 290 | | 1767 | 365 | - | 1835 | 414 | 824 | | 0.2 | 989 | 51 | 565 | 840 | 88 | | 1044 | 124 | | 1201 | 169 | 669 | 1357 | 213 | 738 | _ | 258 | 692 | _ | 303 | - | 1726 | 380 | 841 | 1797 | 429 | 865 | | 0.3 | 222 | 22 | 641 | 692 | 96 | 683 | 981 | 134 | 725 | 1144 | 180 | 09/ | 1306 | 226 | 794 | 1423 | 273 | 821 | 1540 | 319 | 848 | 1689 | 397 | 885 | 1761 | 446 | 906 | | 0.4 | 485 | 65 | 713 | 704 | 106 | 750 | 923 | 146 | 787 | 1091 | 194 | 818 | 1259 | 241 | 848 | 1380 | 289 | 872 | 1500 | 336 | 895 | 1653 | 415 | 929 | 1725 | 463 | 948 | | 0.5 | 418 | 73 | 783 | 644 | 116 | 815 | 870 | 158 | 846 | 1043 | 207 | 873 | 1215 | 256 | 006 | 1339 | 305 | 921 | 1462 | 353 | i | 1618 | 433 | 973 | 1689 | 481 | 991 | | 9.0 | 355 | 82 | 849 | ⊢ | 127 | 876 | 819 | 171 | 1 | 966 | 222 | 一 | 1173 | 272 | 950 | 1299 | 321 | 一 | _ | 370 | | 1582 | 451 | 1 | 1651 | 499 | 1034 | | 0.7 | : | : | : | | : | : | 697 | 184 | 957 | 950 | 236 | 978 | 1131 | 287 | 866 | 1259 | 337 | 1015 | 1387 | 387 | 1032 | 1544 | 468 | 1058 | 1610 | 516 | 1077 | | 0.8 | : | : | | | : | : | 720 | 195 | 1008 | 904 | 248 | 1026 | 1088 | 301 | 1044 | 1218 | 352 | 1060 | 1347 | 403 | 1075 | 1503 | 484 | 1101 | 1565 | 531 | 1121 | | 6.0 | : | -:- | | | : | : | 029 | 206 | 1057 | 857 | - | 1073 | 1043 | 314 | 1088 | 1173 | 366 | 1102 | 1303 | 417 | 1116 | 1458 | 498 | 1142 | : | | 1 | | 1.0 | | | | | | | 617 | 214 | 1102 | 908 | 269 | 1116 | 994 | Н | 1130 | 1125 | 376 | 1144 | 1255 | 428 | 1157 | 1406 | 510 | 1184 | | | - | | 1.1 | | | | | | | 561 | 219 | 1145 | 751 | 276 | 1157 | 941 | Н | - | 1071 | Н | | \Box | Н | - | 1347 | 518 | 1225 | | | | | 1.2 | | | | | | | 200 | 221 | 1185 | 691 | 278 | 1196 | 881 | 335 | 1207 | 1010 | 388 | 1221 | 1139 | 441 | 1234 | 1280 | 522 | 1265 | | | - | | 1.3 | | | | | | | | | | | | | 814 | 335 | 1242 | 942 | 388 | 1256 | 1069 | 441 | 1270 | | | | | | - | | 1.4 | | | | | | | | | | | | | 738 | 330 | 1276 | 864 | 384 | 1291 | 686 | 437 | 1305 | | | | | | ; | | HORIZONTA | Ļ | External | | | | | | | | | | | а | ercent | age or | Percentage of Total Motor Torque | Motor 7 | orque | | | | | | | | | | | | | Static | | 20% | | | 30% | | | 40% | | | 20% | | | %09 | | | %02 | | | %08 | | | %06 | | | 100% | | | Pressure
in. w.g. | Cfm | Watts | RPM | Cfm v | Watts | RPM | Cfm \ | Watts | RPM | Cfm V | Watts | RPM | Cfm | Watts | RPM | Cfm \ | Watts | RPM | | 0 | 794 | 45 | 388 | 026 | 92 | 454 | 1146 | 107 | 519 | 1281 | 149 | 575 | 1416 | 191 | . 089 | 1522 | 110 | 829 | 1627 | 293 | . 972 | 1715 | 351 | 89/ | 1802 | 408 | 810 | | 0.1 | 602 | 44 | 460 | 895 | 78 | П | 1080 | 111 | | 1223 | 155 | 627 | 1366 | 199 | | 1477 | 251 | | ш | 303 | | 1681 | 362 | П | 1773 | 420 | 843 | | 0.2 | 630 | 46 | 531 | 855 | 82 | 583 | 1019 | 117 | - | 1169 | 163 | 629 | 1318 | 208 | | 1435 | 262 | | | 315 | \Box | 1648 | 375 | 841 | 1743 | 434 | 878 | | 0.3 | 226 | 51 | 602 | 128 | 88 | 646 | 961 | 125 | 069 | 1117 | 172 | | 1273 | 219 | . 692 | 1395 | 274 | | 1516 | 328 | 841 | 1615 | 388 | 877 | 1714 | 448 | 912 | | 0.4 | 486 | 58 | 671 | 969 | 97 | 209 | 906 | 135 | 746 | 1068 | 184 | 781 | 1230 | 232 | 815 | 1356 | 288 | 848 | 1481 | 343 | 880 | 1582 | 403 | 914 | 1683 | 463 | 948 | | 0.5 | 420 | 99 | 740 | 637 | 107 | 771 | 854 | 147 | - | 1021 | 196 | 831 | 1188 | 245 | . 098 | 1317 | 301 | | 1446 | 357 | - | 1549 | 418 | - | 1652 | 478 | 983 | | 9.0 | | | | | | | 804 | 159 | 856 | 946 | 209 | | 1147 | 259 | 902 | 1279 | 316 | 932 | \Box | 372 | 928 | 1514 | 432 | - | 1618 | 492 | 1019 | | 0.7 | | | | | | | 756 | 172 | 910 | 932 | 223 | | 1107 | 273 | | 1241 | П | - | ш | П | - | 1478 | 446 | - | 1582 | 909 | 1055 | | 0.8 | | | | | | | 602 | 185 | 962 | 888 | 236 | 978 | 1066 | 287 | 993 | 1201 | \neg | 1014 | 1336 | 400 | 1034 | 1440 | 460 | 1063 | 1544 | 519 | 1091 | | 0.9 | | | | | | | 663 | 197 | 1013 | 844 | 249 | 1025 | 1025 | \vdash | 1036 | 1161 | 357 | _ | ш | 413 | 1072 | 1399 | 472 | | 1502 | 530 | 1127 | | 1.0 | | | | | | | | | | | | | 982 | Н | 1078 | 1118 | 369 | _ | 1254 | 424 | 1109 | 1355 | 482 | 1136 | 1456 | 540 | 1163 | | 1.1 | | | | | | | | | | | | | 938 | 323 | 1119 | 1073 | _ | 1133 | | 434 | 1146 | 1307 | 491 | | 1406 | 548 | 1198 | | 1.2 | | | | | | | | | | | | | 892 | 332 | 1158 | 1026 | 387 | 1170 | 1159 | 441 | 1182 | 1255 | 497 | 1208 | 1351 | 553 | 1233 | | 1.3 | | | | | | | | | | | | | 843 | - | 1197 | 975 | 393 | 1207 | 1106 | 446 | 1216 | 1198 | 501 | 1242 | 1290 | 555 | 1268 | 000 | BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: 1- Any factory installed options air resistance (heat section, economizer, etc). 2- Any field installed accessories air resistance (duct resistance, diffuser, etc). Minimum Air Volume Required for Different Gas Heat Sizes: Standard Heat - 1075 cfm; Medium Heat - 1150 cfm; High Heat - 1500 cfm | Percentage of Total Motor Torqu 50% 60% Cfm Watts RPM Cfm Watts RPM Cfm 1747 377 724 1920 477 792 2041 1619 365 758 1811 473 848 1949 1619 365 788 1811 473 848 1949 1619 365 788 1811 473 848 1949 1619 365 788 1811 473 848 1949 1524 371 823 1772 482 878 1910 1524 401 895 1741 496 910 1890 1456 477 496 910 1891 1784 1868 1456 447 969 1674 562 1009 1831 1456 447 969 1674 1655 587 1043 1686 < | ņ | | |--|---|--| | Secondary Seco | ימי. | | | Cfm Watts RPM | | | | Cfm Watts RPM TA91 276 1677 377 724 1920 477 792 2041 9268 86 584 1177 172 656 1427 256 188 181 473 848 1949 9264 86 634 1177 172 656 187 186 859 174 486 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189
189 | 20% | 001 80% 100% | | 114 124 488 1344 200 572 1573 276 655 1747 377 724 1920 477 792 2041 1012 101 536 1253 1175 126 1016 | RPM Cfm Watts RPM Cfm Watts RPM | is RPM Cfm Watts RPM Cfm Watts RPM Cfm Watts RPM | | 1012 101 538 1253 181 614 1493 261 691 1677 366 755 1860 471 819 9190 926 88 884 1177 172 656 1477 256 767 1572 371 382 1747 482 8178 1916 9190 9181 474 495 910 9180 91 | 655 1747 377 724 1920 477 792 | 844 2161 684 896 2304 852 964 2354 | | 926 88 584 1177 172 656 1427 256 728 1619 365 788 1811 473 848 1949 854 86 634 1113 173 701 1372 280 767 1572 371 829 1742 401 895 1772 482 878 1916 744 104 734 1019 195 791 1292 286 847 1504 401 895 1715 515 942 188 774 122 786 982 1478 423 932 1693 532 1693 883 1737 189 947 189 945 947 189 945 947 189 945 947 189 945 189 1713 189 947 189 189 1713 189 189 1713 189 189 1713 189 189 141 141 | 691 1677 366 755 1860 471 819 1990 | 868 2119 685 916 2277 860 980 | | 854 86 634 1113 173 701 1372 260 767 1572 371 823 1772 485 1771 486 910 1890 734 911 684 1061 181 791 1262 307 888 1478 423 382 1693 154 1890 704 122 785 983 126 391 1262 307 888 1478 423 932 1693 1693 1693 1694 1890 671 145 886 929 926 928 1275 391 929 1456 447 969 1671 562 1009 1831 5696 228 983 884 1391 1104 1382 523 1079 1612 635 1009 1831 5696 228 982 1281 1081 1081 1384 482 472 1091 1631 6 | 728 1619 365 788 1811 473 848 | 894 2086 693 939 2256 873 999 2328 | | 794 91 684 1061 181 746 1328 270 807 1535 383 859 1741 496 910 1890 1704 122 786 983 1215 312 1292 286 847 1504 401 895 1715 515 942 1868 671 145 836 929 284 238 883 1237 331 929 1456 447 966 1674 562 1009 1831 643 171 886 929 264 928 1215 357 969 1435 472 1006 1655 587 1043 1813 619 935 907 291 973 1194 383 1010 1415 498 1043 1635 612 1076 1792 1869 1869 1893 1893 1893 1893 1893 1993 1635 109 1766 1792 1893 1893 1893 1893 1893 1893 1893 1893 | 767 1572 371 823 1772 482 878 1916 | 921 2059 | | 120 124 124 1019 195 1292 286 847 1504 401 895 1715 515 942 1868 1704 122 785 983 215 837 1262 307 888 1478 423 932 1693 538 976 1849 | 807 1535 383 859 1741 496 910 | 950 2038 725 989 2226 913 1042 2311 1014 1065 | | 145 | 847 1504 401 895 1715 515 942 | 979 2020 747 1016 2214 936 1066 2301 1039 1089 | | 643 171 886 929 284 238 883 1237 331 929 1456 447 969 1674 562 1009 1831 813 813 1237 381 929 1435 472 1006 1655 587 1043 1813 1813 1813 1813 1813 1813 1813 18 | 888 1478 423 932 1693 538 976 | 1011 2004 770 1045 | | 643 171 886 929 264 928 1215 357 969 1435 472 1006 1655 587 1043 1813 619 935 907 291 973 1194 383 1010 1415 498 1043 1635 612 1076 1792 596 228 983 884 319 1016 1172 410 1049 1392 523 1079 1612 635 1105 1766 1120 1109 1392 523 1079 1612 635 1105 1764 1043 486 1192 1247 586 171 1451 687 173 1646 1043 486 1192 1247 586 178 178 771 178 < | 929 1456 447 969 1674 562 1009 | 1041 1988 794 1073 2185 983 1118 2270 | | Column C | 969 1435 472 1006 1655 587 1043 | 1073 1970 818 1103 2164 1005 1145 2246 1104 1168 | | 196 228 983 884 319 1016 1172 410 1049 1392 523 1079 1612 635 1109 1766 1120 1 | 1010 1415 498 1043 1635 612 1076 | 3 1104 1948 840 1132 2138 1024 1173 2212 1119 1196 | | 114 115 114 115
115 | 1049 1392 523 1079 1612 635 1109 | 7 1135 1920 859 1161 2104 1038 1200 | | 1120 456 1124 1334 564 1149 1548 671 1173 1695 1085 474 1159 1295 578 1181 1505 681 1202 1646 1043 486 1192 1247 586 1211 1451 685 1230 1585 1043 486 1192 1247 586 1211 1451 685 1230 1585 1043 486 1192 1247 586 1211 1451 685 1230 1586 1043 486 1192 1247 586 1211 1451 685 1230 1586 1043 486 1192 1247 586 1211 1451 685 1230 1586 1043 486 579 1520 557 665 1689 368 738 1857 478 810 1972 1021 104 537 1246 86 194 1470 255 699 1646 368 788 1821 480 837 1941 806 106 628 1145 186 699 1384 266 769 1572 382 831 7759 498 892 1889 808 125 720 1060 781 1342 293 842 1509 412 896 1706 530 950 1843 766 102 225 823 1279 310 879 1481 409 964 1657 569 1011 1759 682 172 886 1949 260 906 1216 348 953 1424 469 997 1652 589 1041 1776 643 191 903 914 279 946 1185 367 989 1396 489 1030 1606 610 1071 1751 1751 1751 1751 1751 1751 17 | 1087 1366 545 1115 1583 655 1142 | 1166 1885 874 1189 2060 1047 | | Column C | 1124 1334 564 1149 1548 671 1173 | 7 1195 1841 883 1217 2004 1050 1254 | | Column C | 1159 1295 578 1181 1505 681 1202 | . 1223 1786 886 1244 1935 1044 1280 | | Cfm Watts RPM | 1192 1247 586 1211 1451 685 1230 | 11250 1718 881 1269 1851 1029 1305 | | Cfm Watts Percentage of Total Motor Torqu Cfm Watts RPM LPM | | | | Cfm Watts RPM | Percentage of | | | Cfm Watts RPM PPM RPM Cfm Watts PPM RPM RPM Cfm Watts RPM R | 20% | %001 80% %08 ° | | 1021 104 537 1304 184 579 1520 257 665 1689 368 738 1857 478 810 1021 104 537 1246 180 618 1470 255 699 1646 368 768 1821 480 837 961 102 582 1193 181 658 1425 259 734 1607 373 799 1789 487 864 906 106 628 1145 186 699 1384 266 769 1672 382 831 1759 487 864 806 106 209 1784 266 769 1672 382 831 1759 498 892 808 125 740 1347 278 806 1540 396 468 1706 530 950 722 155 812 864 1247 328 | RPM Cfm Watts RPM Cfm Watts RPM | is RPM Cfm Watts RPM Cfm Watts RPM Cfm Watts RPM | | 1021 104 537 1246 180 618 1470 255 699 1646 368 768 1821 480 837 961 102 582 1193 181 658 1425 259 734 1607 373 799 1789 487 864 906 106 628 1145 186 699 1384 266 769 1572 382 831 1759 498 892 855 113 674 1101 196 740 1347 278 806 1540 396 864 1732 513 920 764 139 766 1022 225 823 1279 310 879 1481 430 964 1657 550 1011 772 155 812 985 242 864 1247 328 916 1481 430 964 1657 569 1011 | 665 1689 368 738 1857 478 810 | 864 2087 698 918 2196 844 975 2283 925 1000 | | 961 102 582 1193 181 658 1425 259 734 1607 373 799 1789 487 864 906 106 628 1145 186 699 1384 266 769 1572 382 831 1759 498 892 855 113 674 1101 196 740 1347 278 806 1540 396 864 1732 513 921 808 125 720 1060 209 781 1312 293 842 1509 412 896 1706 530 950 764 139 766 1022 225 823 1279 310 879 1481 430 964 1657 569 1011 682 172 858 949 260 1216 348 953 1424 469 967 1656 1011 643 191 | 699 1646 368 768 1821 480 837 | 888 2061 704 938 2179 852 992 | | 906 106 628 1145 186 699 1384 266 769 1572 382 831 1759 498 892 855 113 674 1101 196 740 1347 278 806 1540 396 864 1732 513 921 808 125 720 1060 209 781 1312 293 842 1509 412 896 1706 530 950 764 139 766 1022 225 823 1279 310 879 1481 430 96 1706 530 950 722 155 812 985 242 864 1247 328 916 1452 449 964 1657 569 1011 643 191 903 914 279 946 1185 367 489 1030 1606 1011 | 734 1607 373 799 1789 487 864 | 912 2039 714 | | 855 113 674 1101 196 740 1347 278 806 1540 396 864 1732 513 921 808 125 720 1060 209 781 1312 293 842 1509 412 896 1706 530 950 764 139 766 1022 225 823 1279 310 879 1481 430 930 1682 549 980 722 155 812 985 242 864 1247 328 916 1452 449 964 1657 569 1011 682 172 858 949 260 906 1216 348 953 1424 469 997 1656 610 1011 643 191 903 914 279 946 1185 367 186 489 1030 1606 610 1011 | 769 1572 382 831 1759 498 892 | 938 2018 728 984 2149 | | 808 125 720 1060 209 781 1312 293 842 1509 412 896 1706 530 950 764 139 766 1022 225 823 1279 310 879 1481 430 930 1682 549 980 722 155 812 985 242 864 1247 328 916 1452 449 964 1657 569 1011 682 172 858 949 260 906 1216 348 953 1424 469 997 1652 589 1041 643 191 903 914 279 946 1185 367 989 1396 489 1030 1606 610 1071 -1153 386 1024 1366 50 1100 1071 | 806 1540 396 864 1732 513 921 1866 | 965 1999 744 1008 2134 896 | | 764 139 766 1022 225 823 1279 310 879 1481 430 930 1682 549 980 722 155 812 985 242 864 1247 328 916 1452 449 964 1657 569 1011 682 172 858 949 260 906 1216 348 953 1424 469 997 1632 589 1041 643 191 903 914 279 946 1185 367 989 1396 489 1030 1606 610 1071 1120 404 1059 1334 525 1095 1548 646 1130 1120 404 1059 1334 525 1095 1548 646 1186 | 842 1509 412 896 1706 530 950 | - | | 722 155 812 985 242 864 1247 328 916 1452 449 964 1657 569 1011 682 172 858 949 260 906 1216 348 953 1424 469 997 1632 589 1041 643 191 903 914 279 946 1185 367 989 1396 489 1030 1606 610 1071 -1153 386 1024 1366 508 1062 1579 629 1100 1120 404 1059 1334 525 1095 1548 646 1130 1047 433 1126 | 879 1481 430 930 1682 549 980 1821 | 1019 1960 782 1058 | | 682 172 858 949 260 906 1216 348 953 1424 469 997 1632 589 1041 643 191 903 914 279 946 1185 367 989 1396 489 1030 1606 610 1071 -1153 386 1024 1366 508 1062 1579 629 1100 -1120 404 1059 1334 525 1095 1548 646 1130 1085 420 1093 1300 541 1126 646 1186 1085 420 1093 1300 541 1186 672 1186 <td> 916 1452 449 964 1657 569 1011 </td> <td>3 1048 1940 803 1084 2084 955 1125 </td> | 916 1452 449 964 1657 569 1011 | 3 1048 1940 803 1084 2084 955 1125 | | 643 191 903 914 279 946 1185 367 989 1396 489 1030 1606 610 1071 -1153 386 1024 1366 508 1062 1579 629 1100 -1120 404 1059 1334 525 1095 1548 646 1130 1085 420 1093 1300 541 1126 615 661 1186 1047 433 1126 1263 553 1156 1478 672 1186 | 953 1424 469 997 1632 589 1041 | . 1076 1919 823 1111 2063 974 1150 | | 1153 386 1024 1366 508 1062 1579 629 1100
1120 404 1059 1334 525 1095 1548 646 1130
1085 420 1093 1300 541 1126 1515 661 1158
1047 433 1126 1263 553 1156 1478 672 1186
1047 433 1126 1263 553 1156 1478 672 1186 | 989 1396 489 1030 1606 610 1071 1751 | 1104 1895 843 1137 | | 1120 404 1059 1334 525 1095 1548 646 1130 | 1024 1366 508 1062 1579 629 1100 | 5 1132 1869 861 1163 2011 1008 1201 | | 1085 420 1093 1300 541 1126 1515 661 1158 1158 1047 433 1126 1263 553 1156 1478 672 1186 1005 442 443 1126 1263 553 1156 1478 672 1186 | 1059 1334 525 1095 1548 646 1130 1694 | 1160 1839 876 1189 1979 1021 | | 1047 433 1126 1263 553 1156 1478 672 1186 | 1093 1300 541 1126 1515 661 1158 1660 | 1186 1805 889 1214 1941 1031 | | 1188 1004 1188 1004 1188 1004 1188 1004 1188 1004 1188 1004 | 1126 1263 553 1156 1478 672 1186 1622 | 1213 1766 898 1239 1897 1037 | | | 2 1158 1221 561 1185 1436 680 1212 1579 792 | . 1238 1721 903 1263 1847 1037 1298 | BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: See page 28 for wet coil and options/accessory air resistance data. DOWNFLOW Standard Heat - 1075 cfm; Medium Heat - 1150 cfm; High Heat - 1500 cfm Minimum Air Volume Required for Different Gas Heat Sizes: 1-Any factory installed options air resistance (heat section, economizer, etc). 2-Any field installed accessories air resistance (duct resistance, diffuser, etc). | External | | | | | | | | | | | Pe | rcenta | ae of 1 | Percentage of Total Motor Torque | tor Tor | ane. | | | | | | | | | | | |----------------------|------|-----------|---------|---------|-----------|---------|-------|----------|----------------|-------|----------|---------|---------------------
----------------------------------|---------------------|--------------|----------|-----------|---------|----------|-----------|----------|------|-------|-------|-------| | Static | | 20% | H | 3 | 30% | H | | 40% | H | | 20% | H | 9 | %09 | Н | %02 | % | Ц | 80% | , 0 | Ц | %06 | | | 100% | | | Pressure
in. w.g. | Cfm | Cfm Watts | RPM C | Cfm W | Watts | | Cfm N | (0 | RPM | Cfm N | Watts R | RPM C | Cfm W | Watts RF | RPM Cfm | m Watts | ts RPM | M Cfm | n Watts | s RPM | l Cfm | Watts | RPM | Cfm / | Watts | RPM | | 0 | 1101 | 120 | | Щ | Н | 578 1 | ш | 272 | 662 1 | 1728 | 374 7 | 731 1 | 1901 4 | 475 80 | 800 2023 | ᆫ |) 852 | 2 2145 | ш | H | 2292 | ㄴ | 920 | 2348 | 942 | 968 | | 0.1 | 1002 | 66 | - | 1241 1 | 180 (| - | 1479 | H | 698 1 | 1662 | 366 7 | 763 1 | 1845 4 | 471 82 | 827 1976 | 22 92 | 9 876 | 3 2106 | 189 91 | 924 | 2268 | 865 | 286 | 2334 | 826 | 1013 | | 0.2 | 918 | 88 | - | 1167 1 | 173 (| 663 1 | 1416 | - | _ | 1608 | 366 7 | 796 1 | 1800 4 | 475 85 | 856 1938 | ш | 3 902 | 2 2076 | 269 9. | 947 | 2249 | 880 | 1006 | 2324 | 826 | 1031 | | 0.3 | 848 | 98 | | 1106 1 | 174 | - | 1364 | 261 | 774 1 | 1564 | 373 8 | 830 1 | 1763 4 | 485 88 | 886 1907 | 07 599 | 9 929 | 3 2051 | 1 712 | 972 | 2234 | 899 | 1028 | 2316 | 1000 | 1052 | | 0.4 | 200 | 92 | 688 | 1056 1 | 183 | 751 1 | 1321 | 273 | 814 1 | 1527 | 387 8 | 866 1 | 1733 5 | 501 97 | 918 1882 | 82 617 | 7 958 | 3 2031 | 1 732 | 866 | 2221 | 921 | 1051 | 2307 | 1024 | 1074 | | 0.5 | 742 | 105 | \neg | 1015 1 | . 261 | 796 1 | 1287 | 289 | 854 1 | 1498 | 405 8 | 902 1 | 1709 5 | 520 99 | 950 1862 | 62 637 | 7 988 | 3 2014 | 4 754 | 1025 | 5 2208 | | 1076 | 2296 | 1048 | 1099 | | 9.0 | 703 | 124 | 788 | 981 2 | 217 | 841 1 | 1258 | 310 | 894 1 | 1473 | 427 9 | 939 1 | 1688 5 | 543 98 | 984 1843 | 43 660 | 1019 | 9 1998 | 1777 | 1053 | 3 2194 | 896 | 1101 | 2281 | 1071 | 1124 | | 0.7 | 029 | 146 | 838 6 | 952 2 | 240 | П | 1233 | 334 | 935 1 | 1451 | 451 9 | 976 1 | 1669 5 | 568 10 | 1017 1826 | 26 685 | 5 1050 | 0 1982 | 2 801 | 1082 | 2177 | 991 | 1128 | 2260 | 1092 | 1151 | | 0.8 | 642 | 172 | Н | H | 266 | Н | 1211 | Н | 975 1 | 1431 | 477 1 | 1013 1 | 1650 5 | 593 10 | 1051 1807 | 07 709 | 1081 | 1 1963 | 3 825 | 1111 | 2155 | 1012 | 1155 | 2233 | 1109 | 1178 | | 6.0 | 618 | 200 | 937 6 | 904 2 | 294 | 976 1 | 1190 | 387 1 | 1015 1 | 1410 | 502 1 | 1050 1 | 1629 6 | 617 10 | 1084 1785 | 85 732 | 2 1112 | 2 1940 | 0 846 | 1140 | 2127 | \vdash | 1182 | | | | | 1.0 | 262 | 229 | 3 586 | 882 3 | 321 1 | 1020 1 | 1168 | 413 1 | 1054 1 | 1387 | 526 1 | 1086 1 | 1605 6 | 639 11 | 1117 1758 | 58 752 | 2 1143 | 3 1911 | 1 864 | 1169 | 2090 | 1042 | 1209 | | | 1 1 1 | | 1.1 | | | | | | 1 | 1144 | 437 1 | 1092 1 | 1360 | 548 1 | 1120 1 | 1576 6 | 659 11 | 1148 1725 | 25 769 | 1173 | 3 1874 | 4 878 | 1197 | 2043 | 1049 | 1236 | | | : | | 1.2 | | | | | | 1 | 1115 | 458 1 | 1129 1 | 1328 | 566 1 | 1154 1 | 1540 6 | 674 11 | 1179 1685 | 85 780 | 1202 | 2 1829 | 988 6 | 1225 | 1985 | 1049 | 1262 | | | | | 1.3 | | | | - | | 1 | 1080 | 475 1 | 1163 1 | 1288 | 579 1 | 1186 1 | 1496 6 | 683 12 | 1208 1634 | 34 785 | 5 1230 | 0 1772 | .2 887 | 1251 | 1913 | 1042 | 1288 | | | | | 1.4 | | | | | | 1 | 1037 | 487 1 | 1196 1 | 1239 | 587 1 | 1216 1. | 1441 6 | 686 12 | 1236 1572 | 72 783 | Н | 1256 1703 | 13 880 | Н | 1275 1826 | 1024 | 1312 | | | 1 1 1 | | HORIZONTA | اد | External | | | | | | | | | | | Pe | rcenta | Percentage of Total | | Motor Torque | enb. | | | | | | | | | | | | Static | | %07 | | 63 | 30% | | | 40% | | | %09 | | 9 | %09 | Н | %02 | % | | 80% | , 6 | | %06 | | | 100% | | | Pressure
in. w.g. | Cfm | Cfm Watts | RPM | Cfm W | Watts | RPM | Cfm N | Watts | RPM | Cfm N | Watts R | RPM C | Cfm W | Watts RF | RPM Cfm | m Watts | ts RPM | M Cfm | n Watts | s RPM | l Cfm | Watts | RPM | Cfm \ | Watts | RPM | | 0 | 1077 | 113 | 502 | 1282 1 | 175 | 585 1 | 1486 | 237 | 668 1 | 1670 | 363 7 | 746 1 | 1854 4 | 489 82 | 823 1993 | 93 623 | 884 | 1 2131 | 11 757 | 944 | 2216 | 882 | 962 | 2268 | 926 | 1009 | | 0.1 | 1016 | 109 | | 1227 1 | 172 (| 624 1 | 1437 | H | - | Ш | 361 7 | 775 1 | 1814 4 | 488 8 | 848 1956 | \mathbf{L} | 906 | 3 2098 | ш | Н | 2194 | 887 | 1011 | 2242 | Н | 1026 | | 0.2 | 962 | 111 | | 1177 1 | 174 (| _ | ш | 236 | 735 1 | ш | 364 8 | 805 1 | 777 4 | 492 87 | 874 1923 | 23 627 | 7 930 |) 2069 | 9 762 | 985 | 2175 | ш | 1029 | 2218 | 935 | 1044 | | 0.3 | 913 | 118 | 636 1 | | \dashv | - | | 244 | $\overline{-}$ | _ | 372 8 | T) | 1744 5 | ᅱ | T | | \dashv | T) | | \dashv | _ | _ | 1048 | 2196 | 945 | 1063 | | 0.4 | 898 | 130 | Ti | | ᅱ | - | - | ┥ | \vdash | 4 | \dashv | Ti | 4 | ᅱ | T | _ | ┪ | _ | | ┪ | _ | _ | 1069 | : | :: | - | | 0.5 | 827 | 146 | T | | \exists | T | _ | \dashv | \neg | | \dashv | T | | \dashv | \neg | _ | ╗ | | _ | \dashv | | _ | 1090 | : | : | : | | 9.0 | 789 | 165 | 775 1 | | 227 | _ | | \dashv | 879 1 | 1455 | 416 | 934 1 | _ | 543 98 | 988 1816 | 16 679 | | 4 1972 | 2 815 | 1079 | 9 2102 | 955 | 1113 | : | : | 1 | | 0.7 | 752 | 185 | | 986 2 | ⊣ | | 1219 | \dashv | | _ | \neg | 967 1 | | \neg | - | _ | | 1061 1949 | 9 833 | 1104 | 2081 | | 1136 | : | | : | | 0.8 | 718 | 208 | = | | 268 | | | 328 | 953 1 | 1399 | 455 1 | 1000 1 | _ | 581 10 | 1047 1767 | 67 716 | | 8 192 | 5 851 | 1129 | 2058 | 686 | 1160 | | | | | 6.0 | 684 | 231 | 913 6 | 922 2 | 290 | 951 1 | | \neg | - | Ⅎ | 475 1 | 1033 1 | _ | 600 10 | 1077 1741 | _ | \dashv | 6 1900 | | 1154 | _ | _ | 1185 | | | : | | 1.0 | | | | | | | 1129 | 369 1 | 1025 1 | 1341 | 494 1 | 1066 1 | 1553 6 | 618 11 | 1106 1713 | 13 751 | 1143 | 3 1872 | 2 884 | 1179 | 2001 | 1017 | 1209 | | | | | 1.1 | | | | | | 1 | 1097 | 388 1 | 1060 1 | 1310 | 511 1 | 1098 1 | 1522 6 | 634 11 | 1135 1682 | 82 766 | 3 1170 | 0 1841 | .1 898 | 1204 | 1966 | 1028 | 1233 | | | | | 1.2 | | | | | | 1 | | Н | | | 527 1 | | Щ | Н | - | | Н | | | П | 1925 | _ | 1257 | | | | | 1.3 | | | | | - | | _ | _ | - | 1239 | - | 1159 1. | 1451 6 | 659 11 | 1190 1609 | | - | 1 1767 | 7 917 | \neg | 1879 | 1036 | 1281 | | | | | 1.4 | | | | | | | 985 | 431 1 | 1160 1 | 1197 | 548 1 | 1188 1 | 1409 6 | 665 12 | 1216 1566 | 66 793 | 3 1245 | 5 1723 | 3 920 | 1274 | 1825 | 1033 | 1304 | BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. See page 28 for wet coil and options/accessory air resistance data BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. | See p | age 2 | See page 28 for wet coil and options/accessory air resistance data | coil and | 1 options | /acces | sory air ı | resistar | nce dat | a. | | | | | | | | | | | | | | | | | | |----------|-------|--|----------|-----------|--------|----------------------------------|----------|---------|-----------|-------|------|----------|----------|----------------------------------|----------|---------|----------|---------|----------|-----------|----------|------------|-----------|-----------|-----------|-------| | DOWNFLOW | NFLC | WC | Total | | | | | | | | | | | | Fotal St | atic Pre | Total Static Pressure - in. w.c. | in. w.c. | | | | | | | | | | | | | Air | | 0.1 | _ | 0.2 | 0 | 0.3 | Ĺ | 0.4 | | 0.5 | 0 | 9.0 | 0.7 | 7 | 0.8 | | 0.9 | _ | 1.0 | | 1.1 | | 1.2 | _ | 1.3 | | | ctm | RPM | M Watts | RPM | Watts | RPM V | Watts F | RPM W | Watts F | RPM W | Watts F | RPM W | Watts RI | RPM W | Watts RPM | - | Watts | | 400 | 708 | 8 16 | 793 | 37 | 872 | 53 | : | : | - | | | | | | | | | | | : | ·
:: | - | - | | ;
; | : | | 009 | 835 | 5 46 | 918 | 9 | 1000 | 82 | 1077 | 92 | 1149 | 107 | 1221 | 109 | : | | | | | | | : | : | | | | | : | | 800 | 981 | 1 75 | 1064 | 92 | 1144 | 109 | 1221 | 124 | 1294 | 139 | 1365 | 148 | 1434 | 154 | 1497 | 163 1 | 1555 | 179 1 | 1607 2 | 200 | 1656 2 | 226 17 | 1704 | 254 | i
 | l : | | 1000 | 1166 | 36 105 | 1241 | 124 | 1315 | 141 | 1387 | 159 | 1454 | 176 | 1520 | 191 | 1582 | 207 | 1638 | 227 1 | 1689 | 252 1 | 1737 2 | 279 1 | 1783 3 | 308 18 | 1829 3 | 335 18 | 1873 36 | 362 | | 1200 | 1374 | 74 142 | 1440 | 162 | 1506 | 182 | 1569 | 203 | 1630 | 224 | 1687 | 246 | 1739 | 271 | 1787 | 299 1 | 1832 | 330 1 | 1876 3 | 361 1 | 1920 | 391 18 | 1964 4 | 419 2007 | | 444 | | 1400 | 1591 | 183 | 1647 | 209 | 1701 | 235 | 1755 | 263 | 1806 | 291 | 1854 | 320 | 1899 | 351 | 1942 | 382 1 | 1984 | 412 2 | 2026 4 | 442 2 | 2068 4 | 469 21 | 2110 4 | 496 2153 | | 520 | | 1600 | 1778 | 78 258 | 1827 | 290 | 1876 | 323 | 1923 | 355 | 1970 | 386 | 2015 | 416 | 2059 | 444 | 2102 | 470 2 | 2144 | 494 2 | 2185 5 | 519 2 | 2227 | 545 22 | 2268 5 | 572 2309 | | 009 | | 1800 | 1973 | 73 352 | 2018 | 383 | 2063 | 415 | 2107 | 445 | 2151 | 476 | 2194 | 504 | 2237 | 531 | 2279 | 557 2 | 2319 | 584 2 | 2359 6 | 613 2 | 2397 (| 645 24 | 2435 6 | 679 2471 | L | 713 | | 2000 | 2182 | 32 437 | 2224 | 468 | 2265 | 499 | 2306 | 531 | 2346 | 263 | 2385 | 296 | 2424 | 029 | 2461 | 666 2 | 2496 | 705 2 | 2530 7 | 745 2 | 2564 7 | 786 25 | 2598 8 | 826 2631 | Ш | 998 | | 2200 | 2388 | 38 540 | 2426 | 929 | 2464 | 613 | 2500 | 651 | 2536 | 691 | 2571 | 731 | 2605 | 774 | 2637 | 819 2 | 2668 | 863 2 | 2700 9 | 907 2 | 2732 8 | 949 27 | 2764 9 | 990 2795 | | 1029 | | 2400 | 2589 | 89 679 | 2624 | 719 | 2658 | 761 | 2691 | 803 | 2724 | 846 | 2756 | 890 | 2786 | 935 | 2816 | 980 2 | 2846 1 | 1025 2 | 2876 10 | 1068 2 | 2907 1 | 1109 29 | 2937 11 | 1149 2967 | Н | 1188 | | 2600 | 2787 | 37 845 | 2819 | 887 | 2850 | 930 | 2881 | 973 | 2911 | 1017 | 2941 | 1060 | 2970 | 1104 | 2999 1 | 1147 3 | 3028 1 | 1189 3 | 3057 13 | 1230 3 | 3087 1 | 1270 - | - | | - | | | 2800 | 2983 | 33 1021 | 3013 | 1063 | 3042 | 1106 | 3070 | 1149 | 3099 | 1191 | | | | | | | | | -
| | | | | | _ | | | Total | | | | | | Total Static Pressure - in. w.g. | atic Pr | ressure | ∍ - in. w | g. | | | | | | | | | | | | | | | | | | Air | | 1.4 | <u> </u> | 1.5 | | 1.6 | | 1.7 | | 1.8 | 1 | 1.9 | 2.0 | 0 | | | | | | | | | | | | | | ctm | RPM | M Watts | RPM | Watts | | | | | | | | | | | | | | 800 | | - | 1000 | 1916 | 988 91 | 1957 | 408 | 1998 | 428 | 2037 | 447 | 2077 | 465 | | | | | | | | | | | | | | | | | | 1200 | 2049 | 19 468 | 2089 | 490 | 2128 | 510 | 2168 | 529 | 2207 | 549 | 2246 | 269 | 2285 | 591 | | | | | | | | | | | | | | 1400 | 2194 | 94 543 | 2235 | 292 | 2274 | 288 | 2313 | 611 | 2350 | 637 | 2387 | 664 | 2423 | 694 | | | | | | | | | | | | | | 1600 | 2349 | 19 627 | 2387 | 657 | 2423 | 889 | 2457 | 722 | 2490 | 157 | 2522 | 793 | 2554 | 830 | | | | | | | | | | | | | | 1800 | 2506 |)6 749 | 2539 | 787 | 2571 | 825 | 2602 | 864 | 2632 | 903 | 2662 | 942 | 2692 | 981 | | | | | | | | | | | | | | 2000 | 2663 | 906 80 | 2694 | 945 | 2725 | 985 | 2755 | 1024 | . 2785 | 1063 | 2815 | 1101 | 2845 | 1138 | | | | | | | | | | | | | | 2200 | 2826 | 26 1068 | 2857 | 1107 | 2887 | 1146 | 2916 | 1184 | 2946 | 1221 | 2975 | 1259 | 3005 | 1296 | | | | | | | | | | | | | | 2400 | 2997 | 1227 | 3027 | 1266 | 3056 | 1304 | 3085 | 1342 | | | | | : | | | | | | | | | | | | | | | 2600 | | - | | | | | | - | | : | -: | : | : | : | | | | | | | | | | | | | | 2800 | - | - | : | : | | : | : | : | : | : | : | : | : | : | BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. See page 28 for wet coil and options/accessory air resistance data BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. See page 28 for wet coil and options/accessory air resistance data. | DOWNFLOW | FLOW |----------|-------------|----------|-----------|----------|-------|---------|---------|---------------------------------|----------|-------|-------|-----------------------|---------|---------|------------|-----------|-----------|----------|---------|----------|---------|-----------|-----------|----------|---------| | Total | | | | | | | | | | | ĭ | Total Static Pressure | ic Pres | | - in. w.c. | | | | | | | | | | | | Air | 0.1 | | 0.2 | | 0.3 | 3 | 0.4 | 4 | 0.5 | | 9.0 | | 0.7 | | 0.8 | | 6.0 | _ | 1.0 | | 1.1 | | 1.2 | | 1.3 | | cfm | RPM Watts | - | RPM W | Watts F | RPM V | Watts | RPM | Watts | RPM | Watts | RPM \ | Watts F | RPM | Watts F | RPM W | Watts R | RPM W | Watts R | RPM W | Watts R | RPM W | Watts RF | RPM Watts | tts RPM | M Watts | | 400 | 711 | 16 7 | 962 | 38 | - | : | : | | : | : | : | | : | | | | - | : | - | : | | - | : | ; | 1 | | 009 | 840 7 | 47 9 | 924 (| 99 | 1006 | 83 | 1083 | 96 | 1154 | 107 | 1226 | 109 | : | | | | - | : | - | | : | | ' | | | | 800 | 066 | 76 10 | 1072 | 94 | 1153 | 111 | 1230 | 126 | 1301 | 140 | 1372 | 148 1 | 1441 | 155 1 | 1503 1 | 165 15 | 1560 1 | 181 16 | 1612 2 | 203 16 | 1661 2 | 229 | | - | - | | 1000 | 1179 1 | 108 12 | 1253 1 | 126 1 | 1326 | 144 | 1397 | 161 | 1464 | 178 | 1530 | 194 | 1590 | 210 1 | 1646 2 | 231 16 | 1696 2 | 255 17 | 1744 2 | 283 17 | 1790 3 | 312 18 | 1836 340 | 0 1880 | 365 | | 1200 | 1388 1 | 146 14 | 1454 1 | 166 1 | 1519 | 186 | 1582 | 207 | 1641 | 228 | 1697 | 251 1 | 1749 | 276 1 | 1797 3 | 305 18 | 1842 3 | 336 18 | 1885 3 | 367 19 | 1929 3 | 397 19 | 1973 424 | 4 2016 | 6 450 | | 1400 | 1606 1 | 189 16 | 1661 2 | 216 1 | 1715 | 242 | 1768 | 270 | 1818 | 298 | 1866 | 328 | 1911 | 358 1 | 1953 3 | 390 19 | 1995 4 | 420 20 | 2037 4 | 449 20 | 2079 4 | 476 21 | 2121 503 | 3 2163 | 3 527 | | 1600 | 1794 2 | 268 18 | 1842 3 | 301 1 | 1890 | 333 | 1938 | 364 | 1984 | 396 | 2029 | 426 2 | 2073 | 453 2 | 2115 4 | 479 2 | 2157 5 | 503 2 | 2199 5 | 528 22 | 2240 5 | 553 22 | 2281 581 | 1 2321 | 1 609 | | 1800 | 1991 3 | 364 20 | 2035 3 | 395 2 | 2079 | 426 | 2123 | 456 | 2167 | 486 | 2210 | 515 2 | 2252 | 541 2 | 2294 5 | 568 23 | 2334 5 | 596 23 | 2374 6 | 625 24 | 2412 6 | 657 24 | 2448 692 | 2 2484 | 727 | | 2000 | 2202 4 | 451 22 | 2242 4 | 482 2 | 2283 | 513 | 2323 | 545 | 2363 | 21.2 | 2402 | 611 2 | 2440 | 646 2 | 2477 6 | 683 25 | 2512 7 | 722 25 | 2546 7 | 763 28 | 2579 8 | 804 26 | 2613 844 | 4 2645 | 15 884 | | 2200 | 2408 5 | 559 24 | 2446 5 | 596 2 | 2483 | 633 | 2520 | 672 | 2555 | 712 | 2590 | 753 2 | 2623 | 796 2 | 2655 8 | 841 26 | 2686 8 | 885 27 | 2717 9 | 928 27 | 2748 9 | 970 27 | 2780 1010 | 10 2812 | 2 1050 | | 2400 | 2609 7 | 703 26 | 2644 7 | 744 2 | 2678 | 982 | 2711 | 829 | 2744 | 872 | 2776 | 916 2 | 2806 | 961 2 | 2835 10 | 1006 28 | 2865 10 | 1050 28 | 2895 10 | 1092 29 | 2925 1 | 1133 29 | 2955 1172 | 72 2985 | 1212 | | 2600 | 2808 8 | 874 28 | 2840 8 | 916 2 | 2871 | 626 | 2902 | 1003 | 2932 | 1046 | 2961 | 1090 | 2990 | 1133 3 | 3019 1 | 1176 30 | 3048 12 | 1217 30 | 3077 12 | 1257 3 | 3106 12 | 1297 31 | 3135 1336 | 36 3164 | 1374 | | 2800 | 3006 10 | 1054 30 | 3035 10 | 1096 3 | 3064 | 1139 | 3092 | 1181 | 3121 | 1223 | 3149 | 1265 | 3177 | 1305 3 | 3205 1 | 1344 32 | 3234 1 | 1383 32 | 3262 14 | 1421 3 | 3290 14 | 1460 33 | 3317 1498 | 3345 | 1536 | | 3000 | 3202 12 | 1228 32 | 3229 13 | 1270 3 | 3257 | 1312 | 3284 | 1353 | 3312 | 1394 | 3339 | 1433 | 3366 | 1472 3 | 3393 1 | 1509 34 | 3419 1 | 1547 34 | 3446 15 | 1584 34 | 3472 16 | 1622 34 | 3499 1660 | 30 3525 | 1698 | | Total | | | | | 6 | tal Sta | tic Pre | Total Static Pressure - in. w.g | in. w.g. | | | | | | | | | | | | | | | | | | Air | 1.4 | | 1.5 | _ | 1.6 | | 1.7 | | 1.5 | _ | 1.9 | | 2.0 | _ | | | | | | | | | | | | | ctm | RPM W | Watts R | RPM W | Watts | RPM V | Watts | RPM | Watts | RPM | Watts | RPM \ | Watts | RPM V | Watts | | | | | | | | | | | | | 800 | | | - | 1000 | 1923 3 | 389 19 | 1964 4 | 411 2 | 2004 | 431 | 2043 | 450 | 2083 | 468 | | | | | | | | | | | | | | | | | 1200 | 2057 4 | 473 20 | 2097 4 | 494 2 | 2136 | 514 | 2176 | 534 | 2215 | 253 | 2254 | 574 2 | 2293 | 596 | | | | | | | | | | | | | 1400 | 2205 5 | 549 22 | 2245 5 | 571 2 | 2284 | 294 | 2322 | 618 | 2360 | 644 | 2396 | 672 2 | 2432 | 702 | | | | | | | | | | | | | 1600 | 2360 6 | 637 23 | 2398 6 | 667 2 | 2434 | 669 | 2468 | 733 | 2501 | 292 | 2532 | 805 2 | 2563 | 842 | | | | | | | | | | | | | 1800 | 2519 7 | 763 29 | 2552 8 | 801 2 | 2583 | 840 | 2614 | 879 | 2644 | 918 | 2674 | 957 2 | 2704 | 995 | | | | | | | | | | | | | 2000 | 2677 9 | 924 27 | 2708 8 | 963 2 | 2739 | 1003 | 2769 | 1041 | 2799 | 1080 | 2829 | 1118 2 | 2859 | 1155 | | | | | | | | | | | | | 2200 | 2842 10 | 1089 28 | 2873 1 | 1127 2 | 2905 | 1166 | 2932 | 1203 | 2962 | 1241 | 2991 | 1278 3 | 3021 | 1315 | | | | | | | | | | | | | 2400 | 3015 12 | 1250 30 | 3044 1; | 1289 3 | 3074 | 1327 | 3103 | 1364 | 3132 | 1402 | 3162 | 1439 3 | 3192 | 1476 | | | | | | | | | | | | | 2600 | 3192 14 | 1412 3 | 3221 1 | 1450 3 | 3250 | 1488 | 3279 | 1525 | 3308 | 1562 | 3337 | 1599 3 | 3367 | 1635 | | | | | | | | | | | | | 2800 | 3372 1 | 1574 3 | 3400 1 | 1611 3 | 3428 | 1648 | 3456 | 1685 | 3485 | 1721 | 3514 | 1758 | 3543 | 1794 | | | | | | | | | | | | | 3000 | 3552 17 | 1735 38 | 3578 1. | 1772 3 | 3605 | 1808 | 3633 | 1844 | 3660 | 1880 | 3689 | 1916 | 3717 | 1952 | | | | | | | | | | | | #### FACTORY INSTALLED OPTIONS/FIELD INSTALLED ACCESSORY AIR RESISTANCE - in. w.g. | Air | Wet Indo | or Coil | Reheat | (| Gas Heating | J | | Electric | | Filters | | |---------------|----------|----------|--------|------------------|----------------|--------------|------------|----------|--------|---------|---------| | Volume
cfm | 036, 048 | 060, 072 | Coil | Standard
Heat | Medium
Heat | High
Heat | Economizer | Heat | MERV 8 | MERV 13 | MERV 16 | | 800 | 0.01 | | 0.02 | 0.02 | 0.02 | 0.01 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | | 1000 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.07 | 0.05 | 0.05 | | 1200 | 0.03 | 0.04 | 0.02 | 0.02 | 0.02 | 0.06 | 0.04 | 0.04 | 0.07 | 0.05 | 0.05 | | 1400 | 0.04 | 0.05 | 0.02 | 0.02 | 0.03 | 0.09 | 0.04 | 0.04 | 0.07 | 0.06 | 0.06 | | 1600 | 0.05 | 0.07 | 0.02 | 0.03 | 0.04 | 0.12 | 0.04 | 0.04 | 0.07 | 0.08 | 0.08 | | 1800 | 0.06 | 0.08 | 0.03 | 0.04 | 0.05 | 0.15 | 0.05 | 0.04 | 0.07 | 0.09 | 0.09 | | 2000 | 0.08 | 0.10 | 0.03 | 0.04 | 0.06 | 0.18 | 0.05 | 0.05 | 0.08 | 0.10 | 0.10 | | 2200 | | 0.11 | 0.04 | 0.04 | 0.07 | 0.18 | 0.05 | 0.05 | 0.08 | 0.11 | 0.11 | | 2400 | | 0.13 | 0.04 | 0.05 | 0.08 | 0.20 | 0.05 | 0.05 | 0.08 | 0.12 | 0.12 | #### **POWER EXHAUST FAN PERFORMANCE** | Return Air System Static
Pressure in. w.g. | Air Volume Exhausted cfm | |---|--------------------------| | 0.00 | 2000 | | 0.05 | 1990 | | 0.10 | 1924 | | 0.15 | 1810 | | 0.20 | 1664 | | 0.25 | 1507 | | 0.30 | 1350 | | 0.35 | 1210 | #### CEILING DIFFUSERS AIR RESISTANCE (in. w.g.) | Air Volume - cfm | R | TD11-95S Step-Down Diffus | er | FD11-95S | |------------------|-------------|---------------------------|-----------------------|----------------| | Air volume - cim | 2 Ends Open | 1 Side & 2 Ends Open | All Ends & Sides Open | Flush Diffuser | | 1800 | 0.13 | 0.11 | 0.09 | 0.09 | | 2000 | 0.15 | 0.13 | 0.11 | 0.10 | | 2200 | 0.18 | 0.15 | 0.12 | 0.12 | | 2400 | 0.21 | 0.18 | 0.15 | 0.14 | | 2600 | 0.24 | 0.21 | 0.18 | 0.17 | | 2800 | 0.27 | 0.24 | 0.21 | 0.20 | | 3000 | 0.32 | 0.29 | 0.25 | 0.25 | #### **CEILING DIFFUSER AIR THROW DATA** | Air Volume - cfm | 1 Effective | Throw - ft. | |------------------|-------------|-------------| | Air volume - cim | RTD11-95S | FD11-95S | | 2600 | 24 - 29 | 19 - 24 | | 2800 | 25 - 30 | 20 - 28 | | 3000 | 27 - 33 | 21 - 29 | ¹ Effective throw based on terminal velocities of 75 ft. per minute. #### **Refrigerant Leak Detection System** #### **A-System Test** Initiate Refrigerant Leak Detection System
Test by using the following mobile service app menu path: ## RTU MENU > COMPONENT TEST > LEAK DETECTION > START TEST 2 - Ensure that indoor blower, outdoor fan, and combustion air blower (LGT only) are energized. #### Start-Up ## **A** IMPORTANT If unit is equipped with a crankcase heater. Make sure heater is energized 24 hours before unit start- up to prevent compressor damage as a result of slugging. #### A-Start-Up #### **Heating - LDT Units** **NOTE -** L1 reversing valve is de-energized in the heating mode. - 1 Set thermostat or temperature control device to initiate a first-stage heating demand. - 2 Outdoor Temperature **ABOVE** Balance Point Setpoint (35°F default): A first-stage heating demand (W1) will energize the compressor, the outdoor fan, and the blower. A second-stage heating demand (W2) will deenergize the compressor through K27. **High gas heat** will be energized. 3 - Outdoor Temperature **BELOW** Balance Point Setpoint (35°F default): A first-stage heating demand (W1) will energize **low gas heat** and the blower motor. A second-stage heating demand (W2) will energize **high gas heat**. #### **Heating - LHT Units** - Set thermostat or temperature control device to initiate a first-stage heating demand. - 2 A first-stage heating demand (W1) will energize compressor 1 and outdoor fan. **NOTE -** L1 Reversing Valve is de-energized in the heating mode. #### **LH Units With Optional Electric Heat** An increased heating demand (W2) will energize electric heat. Electric heat is also energized during the defrost cycle to maintain discharge air temperature. #### Cooling NOTE - 024 units are single-speed cooling operation only. 1 - Initiate full load cooling operation using the following mobile service app menu path: #### **COMPONENT TEST > COOLING >** #### **COOLING STAGE 2** 2 - Units contain one refrigerant circuit. **NOTE -** Units are equipped with two-stage compressors. - 3 Unit is charged with R-454B refrigerant. See unit rating plate for correct amount of charge. - 4 Refer to Refrigerant Charge and Check section for proper method to check refrigerant charge. #### **B-Three Phase Scroll Compressor Voltage Phasing** Three phase scroll compressors must be phased sequentially to ensure correct compressor and blower rotation and operation. Compressor and blower are wired in phase at the factory. Power wires are color-coded as follows: line 1-red, line 2-yellow, line 3-blue. - Observe suction and discharge pressures and blower rotation on unit start-up. - 2 Suction pressure must drop, discharge pressure must rise, and blower rotation must match rotation marking. If pressure differential is not observed or blower rotation is not correct: - 3 Disconnect all remote electrical power supplies. - 4 Reverse any two field-installed wires connected to the line side of K1 contactor. Do not reverse wires at blower contactor. Make sure the connections are tight. Discharge and suction pressures should operate at their normal start-up ranges. #### C-Refrigerant Charge and Check - Fin/Tube Coil ## WARNING - Do not exceed nameplate charge under any condition. This unit is factory charged and should require no further adjustment. If the system requires additional refrigerant, reclaim the charge, evacuate the system, and add required nameplate charge. | Refrigerant C | harge R-454B | | |---------------|----------------------|---------------------| | Unit | M _c (lbs) | M _c (kg) | | LDT/LHT036 | 13.56 | 6.15 | | LDT/LHT048 | 13.94 | 6.32 | | LDT/LHT060 | 16.13 | 7.31 | | LDT/LHT072 | 13.63 | 6.18 | In addition to conventional charging procedures, the following requirements shall be followed. - Ensure that contamination of different refrigerants does not occur when using charging equipment. Hoses or lines shall be as short as possible to minimize the amount of refrigerant contained in them. - Cylinders shall be kept in an appropriate position according to the instructions. - Ensure that the unit is earth grounded prior to charging the system with refrigerant. - Label the system when charging is complete (if not already). Extreme care shall be taken not to overfill the unit. Prior to recharging the system, it shall be pressuretested with the appropriate purging gas. The system shall be leak-tested on completion of charging but prior to commissioning. A follow up leak test shall be carried out prior to leaving the site. - When removing refrigerant from a system, either for servicing or decommissioning, it is recommended good practice that all refrigerants are removed safely. - When transferring refrigerant into cylinders, ensure that only appropriate refrigerant recovery cylinders are employed. Ensure that the correct number of cylinders for holding the total system charge is available. All cylinders to be used are designated for the recovered refrigerant and labelled for that refrigerant (i. e. special cylinders for the recovery of refrigerant). Cylinders shall be complete with pressure-relief valve and associated shut-off valves in good working order. Empty recovery cylinders are evacuated and, if possible, cooled before recovery - The recovery equipment shall be in good working order with a set of instructions concerning the equipment that is at hand and shall be suitable for the recovery of all appropriate refrigerants including, when applicable, flammable refrigerants. In addition, a set of calibrated weighing scales shall be available and in good working order. Hoses shall be complete with leak-free disconnect couplings and in good condition. Before using the recovery machine, check that it is in satisfactory working order, has been properly maintained and that any associated electrical components are sealed to prevent ignition in the event of a refrigerant release. Consult manufacturer if in doubt. - The recovered refrigerant shall be returned to the refrigerant supplier in the correct recovery cylinder, and the relevant waste transfer note arranged. Do not mix refrigerants in recovery units and especially not in cylinders. - If compressors or compressor oils are to be removed, ensure that they have been evacuated to an acceptable level to make certain that flammable refrigerant does not remain within the lubricant. The evacuation process shall be carried out prior to returning the compressor to the suppliers. Only electric heating to the compressor body shall be employed to accelerate this process. When oil is drained from a system, it shall be carried out safely. **NOTE -** System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge must be weighed into the system. If weighing facilities are not available, or to check the charge, use the following procedure: 1 - Attach gauge manifolds and operate unit in cooling mode on HIGH SPEED with economizer disabled until system stabilizes (approximately five minutes). Make sure outdoor air dampers are closed. **NOTE -** Use mobile service app menu path: ## COMPONENT TEST > COOLING > COOLING STAGE 2 - 2 Use a thermometer to accurately measure the outdoor ambient temperature. - 3 Apply the outdoor temperature to TABLE 6 through TABLE 8 to determine normal operating pressures. Pressures are listed for sea level applications at 80°F dry bulb and 67°F wet bulb return air. - 4 Compare the normal operating pressures to the pressures obtained from the gauges. Minor variations in these pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system. Correct any system problems before proceeding. - 5 If discharge pressure is high, remove refrigerant from the system. If discharge pressure is low, add refrigerant to the system. - · Add or remove charge in increments. - Allow the system to stabilize each time refrigerant is added or removed. - 6 Use one of the following charge verification methods along with the normal operating pressures to confirm readings. #### Charge Verification - Approach Method - AHRI Testing - 1 Using the same thermometer, compare liquid temperature to outdoor ambient temperature. - Approach Temperature = Liquid temperature (at condenser outlet) minus ambient temperature. - 2 Approach temperature should be 3.8°F +/- 1 (2.1°C +/- 0.5). An approach temperature greater than this value indicates an under-charge. An approach temperature less than this value indicates an over-charge. - 3 The approach method is not valid for grossly over or undercharged systems. Use TABLE 10 as a guide for typical operating pressures. | TABLE 6 5810
036 NORMAL OPERATIN | | ES | |-------------------------------------|-------------------------------|----------------------------| | Outdoor Coil
Entering Air Temp | Discharge <u>+</u>
10 psig | Suction <u>+</u>
5 psig | | 65°F | 226 | 137 | | 75°F | 261 | 139 | | 85°F | 302 | 141 | | 95°F | 349 | 143 | | 100°F | 395 | 145 | | 115°F | 460 | 148 | | TABLE 7 5810
048 NORMAL OPERATIN | | RES | |-------------------------------------|-------------------------------|---------------------| | Outdoor Coil
Entering Air Temp | Discharge <u>+</u>
10 psig | Suction ±
5 psig | | 65°F | 235 | 126 | | 75°F | 272 | 127 | | 85°F | 314 | 129 | | 95°F | 359 | 130 | | 100°F | 401 | 132 | | 115°F | 456 | 135 | | TABLE 8 581068-02
060 NORMAL OPERATING PRESSURES | | | | | |---|-------------------------------|---------------------|--|--| | Outdoor Coil
Entering Air Temp | Discharge <u>+</u>
10 psig | Suction ±
5 psig | | | | 65°F | 244 | 124 | | | | 75°F | 287 | 132 | | | | 85°F | 330 | 135 | | | | 95°F | 377 | 137 | | | | 100°F | 430 | 140 | | | | 115°F | 491 | 143 | | | | TABLE 9 581240-01
072 NORMAL OPERATING PRESSURES | | | | | |---|-------------------------------|---------------------|--|--| | Outdoor Coil
Entering Air Temp | Discharge
<u>+</u>
10 psig | Suction ±
5 psig | | | | 65°F | 258 | 125 | | | | 75°F | 299 | 128 | | | | 85°F | 342 | 130 | | | | 95°F | 387 | 133 | | | | 100°F | 444 | 135 | | | | 115°F | 498 | 137 | | | | TABLE 10
SUBCOOLING TEMPERATURE | | | | | | |---|------|---------------------------------------|--|--|--| | Unit Outdoor Coil Entering Temp Subcoolin | | Subcooling Temp | | | | | 036 | 95°F | 8.5°F <u>+</u> 1 (4.7°C <u>+</u> 0.5) | | | | | 048 | 95°F | 8.4°F <u>+</u> 1 (4.7°C <u>+</u> 0.5) | | | | | 060 | 95°F | 9.6°F <u>+</u> 1 (5.3°C <u>+</u> 0.5) | | | | | 072 | 95°F | 6.8°F ± 1 (3.8°C ± 0.5) | | | | #### **C-Compressor Controls** See unit wiring diagram to determine which controls are used on each unit. Optional controls are identified on wiring diagrams by arrows at junction points. #### 1 - High Pressure Switch (S4) The compressor circuit is protected by a high pressure switch which opens at 640 psig \pm 10 psig (4413 kPa \pm 70 kPa) and automatically resets at 475 psig \pm 20 psig (3275kPa \pm 138 kPa). #### 2 - Low Pressure Switch (S87) The compressor circuit is protected by a loss of charge switch. Switch opens at 40 psig \pm 5 psig (276 \pm 34 kPa) and automatically resets at 90 psig \pm 5 psig (621 kPa \pm 34 kPa). #### 3 - Diagnostics Sensors (RT46, RT48) Two thermistors are located on specific points in the refrigeration circuit. The thermistors provide constant temperature feedback to the Unit Controller to protect the compressor. Thermistors take the place of the freezestat and low ambient pressure switch. #### 4 - Defrost Controls (RT48, RT17) Both sensors provide input to the defrost control which cycles defrost. The ambient sensor (RT17) is located on the inside of the corner mullion on the back of the outdoor coil section. The coil sensor (RT48) is located on a return bend on the front of the outdoor coil. #### 5 - Compressor Crankcase Heater (HR1) Crankcase heater must be energized at all times to prevent compressor damage due to refrigerant migration. Energize crankcase heater 24 hours before unit start-up by setting thermostat so that there is no cooling demand (to prevent compressor from cycling) and apply power to unit. #### Defrost Control The defrost control ensures that the heat pump outdoor coil does not ice excessively during the heating mode. The defrost control uses input from the coil and ambient sensor to issue demand defrost controls from the Unit Controller. If the system fails to calibrate or obtain readings for demand defrost, defrost will run-time at field setting. Low gas heat (LDT) or electric heat (optional) is energized during defrost. #### **Defrost Test or Forced Defrost Option** A TEST option is provided for troubleshooting. The TEST mode may be started at any time using the mobile service app. Defrost mode may be started by entering the Defrost Mode in the Component Test Menu. When defrost is started, unit will run in Defrost Mode for a maximum of 5 minutes or when the outdoor coil reaches 100°F, whichever occurs first. #### **Diagnostic Sensors** Units are equipped with two factory-installed thermistors (RT46 and RT48) located on different points on the refrigerant circuit. The thermistors provide the Unit Controller with constant temperature readings of two specific locations on the refrigeration circuit. These temperatures are used as feedback in certain modes of unit operation. In addition, the Unit Controller uses these temperatures to initiate alarms such as loss of condenser or evaporator airflow and loss of charge. Each thermistor must be specifically placed for proper unit operation and to initiate valid alarms. See TABLE 11 for proper locations. TABLE 11 THERMISTOR LOCATION | Unit | Sensor Yellow | Figure | |--------------------------------|---------------|-----------| | 036, 048, 060, 072 Indoor Coil | RT46 | FIGURE 24 | | 048 Outdoor Coil | RT48 | FIGURE 25 | | 060, 072 Outdoor Coil | RT48 | FIGURE 26 | FIGURE 25 #### **RDS Sensors** Units are equipped with factory-installed RDS Sensors located on different points on the unit. The RDS sensors provide the Unit Controller with continuous readings for leaked refrigerant concentration levels and sensor health status (Good or Fault). These readings are used to modify unit operation to disperse the leaked refrigerant and to remove possible ignition sources. In addition, the Unit Controller uses these readings to initiate alarms to alert the operator of a refrigerant leak or faulty sensor(s). Each sensor must be specifically placed for proper unit operation and to initiate valid alarms. To identify sensor locations see TABLE 12. | TABLE 12 | | | | | | |--------------------|-----------|----------------------|-----------|--|--| | RDS Sensor Figures | | | | | | | Model | Qty. | Туре | Figure | | | | LDT036-072 | 2 sensors | ID SENSOR | FIGURE 27 | | | | | | COMPRESSOR
SENSOR | FIGURE 28 | | | | LHT036-072 | 1 sensor | ID SENSOR | FIGURE 27 | | | FIGURE 27 FIGURE 28 ## **Cooling Operation** ### **A-Two-Stage Thermostat** 1 - Economizer With Outdoor Air Suitable Y1 Demand - Compressor Off **Blower Low** **Dampers Modulate** Y2 Demand - Compressor Low Blower High Dampers Full Open **NOTE -** Compressor is energized after damper has been at full open for three minutes. 2 - No Economizer or Outdoor Air Not Suitable Y1 Demand - Compressor Low **Blower Low** **Dampers Minimum Position** Y2 Demand - Compressor High Blower High **Dampers Minimum Position** ### **B-Three-Stage Thermostat OR Room Sensor** 1 - Economizer With Outdoor Air Suitable Y1 Demand - Compressors Off Blower Low **Dampers Modulate** Y2 Demand - Compressor Low Blower High Dampers Full Open **NOTE -** Compressor is energized after damper has been at full open for three minutes. Y3 Demand - Compressor High Blower High Dampers Full Open 2 - No Economizer or Outdoor Air Not Suitable Y1 Demand - Compressor Low Blower Low **Dampers Minimum Position** Y2 Demand - Compressor High Blower High **Dampers Minimum Position** Y3 Demand - Compressor High Blower High Dampers Minimum Position High speed compressor cooling operation: RTU MENU > COMPONENT TEST > COOLING > COOLING STAGE 2 Low speed compressor cooling operation: RTU MENU > COMPONENT TEST > COOLING > COOLING STAGE 1 ## **Heating Operation** ### **A-Heat Pump Operation** W1 Demand - Compressor High Blower Heating Speed Reversing Valve De-Energized W2 Demand (Optional Electric Heat) - Compressor High Speed Blower Heating Speed Reversing Valve De-Energized Optional Electric Heat Energized NOTE - Electric heat is also energized during the defrost cycle. ### **B-Gas Heat Operation** 1 - Outdoor Temperature ABOVE Balance Point Setpoint W1 Demand - Compressor High Blower Heating Speed Reversing Valve De-Energized W2 Demand - Compressor Off Blower Heating Speed Low Gas Heat Energized NOTE - Gas heat is also energized during the defrost cycle. 2 - Outdoor Temperature BELOW Balance Point Setpoint W1 Demand - Compressor Off Blower Heating Speed Low Gas Heat Energized W2 Demand - Compressor Off Blower Heating Speed High Gas Heat Energized **NOTE -** Gas heat is also energized during the defrost cycle. High speed compressor heating operation: RTU MENU > COMPONENT TEST > HEATING Defrost Operation Test: RTU MENU > COMPONENT TEST > DEFROST ## Gas Heat Start-Up (LDT Units) ### FOR YOUR SAFETY READ BEFORE LIGHTING # WARNING Electric shock hazard. Can cause injury or death. Do not use this unit if any part has been under water. Immediately call a qualified service technician to inspect the unit and to replace any part of the control system and any gas control which has been under water. # **A WARNING** Danger of explosion. Can cause injury or product or property damage. If over heating occurs or if gas supply fails to shut off, shut off the manual gas valve to the appliance before shutting off electrical supply. # WARNING Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies. # **A WARNING** **SMOKE POTENTIAL** The heat exchanger in this unit could be a source of smoke on initial firing. Take precautions with respect to building occupants and property. Vent initial supply air outside when possible. BEFORE LIGHTING smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. The gas valve may be equipped with either a gas control lever or gas control knob. Use only your hand to push the lever or turn the gas control knob. Never use tools. If the lever will not move or the knob will not push in or turn by hand, do not try to repair it. Call a qualified service technician. Force or attempted repair may result in a fire or explosion. # **A WARNING** Danger of explosion. Can cause injury or death. Do not attempt to light manually. Unit has a direct spark ignition system. This unit is equipped with an automatic spark ignition system. There is no pilot. In case of a safety shutdown, move thermostat switch to OFF and return the thermostat switch to HEAT to reset ignition control. ### A-Placing Unit In Operation # **A WARNING** Danger of explosion and fire. Can cause injury or product or property damage. You must follow these instructions exactly. ### **Gas Valve Operation (FIGURE 29)** - 1 Set thermostat to lowest setting. - 2 Turn off all electrical power to appliance. - 3 This appliance is equipped with an ignition device which automatically lights the burner. Do not try to light the burner by hand. - 4 Open or remove the control access panel. ### FIGURE 29 - 5 Move gas valve switch to OFF. See FIGURE 29. - 6 Wait five (5) minutes to clear out any gas. If you then smell gas, STOP! Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions. If you do not smell gas, go to the next step. - 7 Move
gas valve switch to ON. See FIGURE 29. - 8 Close or replace the control access panel. - 9 Turn on all electrical power to appliance. - 10 -1Set thermostat to desired setting. **NOTE -** When unit is initially started, steps 1 through 9 may need to be repeated to purge air from gas line. 11 - The ignition sequence will start. - 12 -If the furnace does not light the first time (gas line not fully purged), it will attempt up to two more ignitions before locking out. - 13 -If lockout occurs, repeat steps 1 through 10. - 14 -If the appliance will not operate, follow the instructions "Turning Off Gas to Appliance" and call your service technician or gas supplier. ### **Turning Off Gas to Unit** - If using an electromechanical thermostat, set to the lowest setting. - 2 Before performing any service, turn off all electrical power to the appliance. - 3 Open or remove the control access panel. - 4 Move gas valve switch to **OFF**. - 5 Close or replace the control access panel. # **A WARNING** Danger of explosion and fire. Can cause injury or product or property damage. You must follow these instructions exactly. ## **Heating Operation and Adjustments** (Gas Units) # A-Heating Sequence of Operation ## Two-Stage - 1 On a heating demand the combustion air inducer starts immediately. - 2 Combustion air pressure switch proves inducer operation. After a 30-second pre-purge, power is allowed to ignition control. Switch is factory set and requires no adjustment. - 3 Spark ignitor energizes and gas valve solenoid opens. - 4 Spark ignites gas, ignition sensor proves the flame and combustion continues. - 5 If flame is not detected after 8 seconds, the ignition control will repeat steps 3 and 4 two more times. The ignition control will wait 5 minutes before the ignition attempt recycles. ### **B-Ignition Control Diagnostic LEDs** # TABLE 13 IGNITION CONTROL HEARTBEAT LED STATUS | LED Flashes | Indicates | |-------------|--| | Steady OFF | No power or control hardware fault. | | Steady ON | Power applied. Control OK. | | 3 Flashes | Ignition lockout from too many trials. | | 4 Flashes | Ignition lockout from too many flame losses within single call for heat. | | 5 Flashes | Control hardware fault detected. | #### **C-Limit Controls** Limit controls are factory-set and are not adjustable. The primary limit is located to the right of the combustion air inducer. See FIGURE 34. ### **D-Heating Adjustment** Main burners are factory-set and do not require adjustment. The following manifold pressures are listed on the gas valve. Natural Gas Units - Low Fire - 2.0" w.c. Natural Gas Units - High Fire - 3.5" w.c. LP Gas Units - Low Fire - 5.9" w.c. LP Gas Units - High Fire - 10.5" w.c. ## Electric Heat Start-Up (LHT Units) Optional electric heat will stage on and cycle with thermostat demand. See electric heat wiring diagram on unit for sequence of operation. ## **SCR Electric Heat Controller (LHT Units)** Optional factory-installed SCR (A38) will provide small amounts of power to the electric heat elements to efficiently maintain warm duct air temperatures when there is no heating demand. The SCR maintains duct air temperature based on input from a field-provided and installed thermostat (A104) and duct sensor (RT20). SCR is located in the compressor section on the left wall. Use only with a thermostat or specified DDC control system. Use the instructions provided with the thermostat to set DIP switches as follows: S1 On, S2 Off, S3 Off. Use the instructions provided with the duct sensor to install sensor away from electric element radiant heat and in a location where discharge air is a mixed average temperature. Once power is supplied to unit, zero SCR as follows: - 1 Adjust thermostat (A104) to minimum position. - Use a small screwdriver to slowly turn the ZERO potentiometer on the SCR until the LED turns solid red. - 3 Very slowly adjust the potentiometer the opposite direction until the LED turns off. ## **Preventative Maintenance / Repair** # IMPORTANT MAINTENANCE / REPAIR SAFETY INSTRUCTIONS Prior to beginning work on systems containing FLAMMABLE REFRIGERANTS, safety checks are necessary to ensure that the risk of ignition is minimized. Work shall be undertaken under a controlled procedure to minimize the risk of a flammable gas or vapor being present while the work is being performed. All maintenance staff and others working in the local area shall be instructed on the nature of work being carried out. Work in confined spaces shall be avoided. The area shall be checked with an appropriate refrigerant detector prior to and during work, to ensure the technician is aware of potentially toxic or flammable atmospheres. Ensure that the leak detection equipment being used is suitable for use with all applicable refrigerants, i.e. non-sparking, adequately sealed or intrinsically safe. If any hot work is to be conducted on the refrigerating equipment or any associated parts, appropriate fire extinguishing equipment shall be available to hand. Have a dry powder or CO2 fire extinguisher adjacent to the charging area. No person carrying out work in relation to a REFRIGERATING SYSTEM which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, should be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks. "No Smoking" signs shall be displayed. Where electrical components are being changed, they shall be fit for the purpose and to the correct specification. At all times, the manufacturer's maintenance and service guidelines shall be followed. If in doubt, consult the manufacturer's technical department for assistance. Repair and maintenance to electrical components shall include initial safety checks and component inspection procedures. If a fault exists that could compromise safety, then no electrical supply shall be connected to the circuit until it is satisfactorily dealt with. If the fault cannot be corrected immediately but it is necessary to continue operation, an adequate temporary solution shall be used. This shall be reported to the owner of the equipment so all parties are advised. Initial safety checks shall include: - that capacitors are discharged: this shall be done in a safe manner to avoid possibility of sparking - that no live electrical components and wiring are exposed while charging, recovering or purging the system - that there is continuity of earth bonding The following checks shall be applied to installations using FLAMMABLE REFRIGERANTS: - the actual REFRIGERANT CHARGE is in accordance with the room size within which the refrigerant - containing parts are installed; - the ventilation machinery and outlets are operating adequately and are not obstructed; - if an indirect refrigerating circuit is being used, the secondary circuit shall be checked for the presence of refrigerant; - marking to the equipment continues to be visible and legible. Markings and signs that are illegible shall be corrected; - refrigerating pipe or components are installed in a position where they are unlikely to be exposed to any substance which may corrode refrigerant containing components, unless the components are constructed of materials which are inherently resistant to being corroded or are suitably protected against being so corroded. During repairs to sealed electrical components, the components shall be replaced. Replacement parts shall be in accordance with the manufacturer's specifications. During repairs to intrinsically safe components, the components must be replaced. Replace components only with parts specified by the manufacturer. Other parts may result in the ignition of refrigerant in the atmosphere from a leak. The unit should be inspected once a year by a qualified service technician. # WARNING Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies. # CAUTION Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing. #### **A-Filters** Units are equipped with temporary filters which must be replaced prior to building occupation. Use four 20 X 20 X 2" (508 X 508 X 51mm) filters. Refer to local codes or appropriate jurisdiction for approved filters. # **A WARNING** Units are shipped from the factory with temporary filters. Replace filters before building is occupied. Damage to unit could result if filters are not re placed with approved filters. Refer to appropriate codes. Approved filters should be checked monthly and replaced when necessary. Take note of air flow direction marking on filter frame when reinstalling filters. See FIGURE 30. **NOTE -** Filters must be U.L.C. certified or equivalent for use in Canada. #### **B-Lubrication** All motors are lubricated at the factory. No further lubrication is required. ### C-Burners (LDT Only) Periodically examine burner flames for proper appearance during the heating season. Before each heating season examine the burners for any deposits or blockage which may have occurred. FIGURE 30 Clean burners as follows: - 1 Turn off both electrical power and gas supply to unit. - 2 Remove blower access panel. - 3 Remove top burner box panel. - 4 Remove screws securing burners to burner support and lift the individual burners or the entire burner assembly from the orifices. See FIGURE 31. Clean as necessary. - 5 Locate the ignitor under the right burner. Check ignitor spark gap with
appropriately sized twist drills or feeler gauges. See FIGURE 32. - 6 Replace burners and screws securing burner. See FIGURE 31. # **A** WARNING Danger of explosion. Can cause injury or death. Do not overtighten main burner mounting screws. Snug tighten only. - 7 Replace access panel. - 8 Restore electrical power and gas supply. Follow lighting instructions attached to unit and use inspection port in access panel to check flame. FIGURE 31 FIGURE 32 ## **D-Combustion Air Inducer (LDT Only)** A combustion air proving switch checks combustion air inducer operation before allowing power to the gas controller. Gas controller will not operate if inducer is obstructed. Under normal operating conditions, the combustion air inducer wheel should be checked and cleaned prior to the heating season. However, it should be examined periodically during the heating season to establish an ideal cleaning schedule. FIGURE 33 Clean combustion air inducer as follows: - 1 Shut off power supply and gas to unit. - 2 Remove the mullion on the right side of the heat section. - 3 Disconnect pressure switch air tubing from combustion air inducer port. - 4 Remove and retain screws securing combustion air inducer to flue box. Remove vent connector. See FIGURE 34. - 5 Clean inducer wheel blades with a small brush and wipe off any dust from housing. Take care not to damage exposed fan blades. Clean accumulated dust from front of flue box cover. - 6 Return combustion air inducer motor and vent connector to original location and secure with retained screws. It is recommended that gaskets be replaced during reassembly. - 7 Replace mullion. - 8 Clean combustion air inlet louvers on blower access panel using a small brush. FIGURE 34 ### E-Flue Box (LDT Units) Remove flue box cover only when necessary for equipment repair. Clean inside of flue box cover and heat exchanger tubes with a wire brush when flue box cover has to be removed. Install a new flue box cover gasket and replace cover. Make sure edges around flue box cover are tightly sealed. ### **F-Evaporator Coil** Inspect and clean coil at beginning of each cooling season. Clean using mild detergent or commercial coil cleaner. Flush coil and condensate drain with water taking care not to get insulation, filters and return air ducts wet. #### G-Condenser Coil Clean condenser coil annually with detergent or commercial coil cleaner and inspect monthly during the cooling season. Condenser coils are made of single and two formed slabs. On units with two slabs, dirt and debris may become trapped between the slabs. To clean between slabs, carefully separate coil slabs and wash them thoroughly. See FIGURE 35. Flush coils with water following cleaning. **NOTE -** Remove all screws and gaskets prior to cleaning procedure and replace upon completion. ### H-Supply Air Blower Wheel Annually inspect supply air blower wheel for accumulated dirt or dust. Turn off power before attempting to remove access panel or to clean blower wheel. FIGURE 35 ### J-Needlepoint Bipolar Ionizer (Optional) The optional, brush-type ionizer produces positive and negative ions to clean air and reduce airborne contaminants. The ionizer was designed to be low maintenance. The device should be checked semi-annually to confirm the brushes are clean for maximum output. The ionizer is located behind on the blower deck to the left of the blower. See FIGURE 37. - 1 On the back side of the unit, remove the screw securing the back of the ionizer bracket. See FIGURE 36. Retain the screw to secure the back side of the ionizer bracket. - Remove two screws securing the front side of the ionizer bracket and pull out of unit and clean brushes - 3 Replace ionizer in the reverse order it was removed. FIGURE 37 ### K-UVC Light (Optional) When field-installed, use only UVC Light Kit assembly 106881-01 (21A92) with this appliance. Factory-Installed UVC Light When the UVC light is factory installed, the lamp is shipped attached to the filter rack. Remove the lamp and install into the UVC light assembly as shown in steps 2 through 11. 1 - Cut wire ties and remove the UVC lamp attached to the filter rack. See FIGURE 38. FIGURE 38 **Annual Lamp Replacement** # **▲** WARNING ### Personal Burn Hazard. Personal injury may result from hot lamps. During replacement, allow lamp to cool for 10 minutes be fore removing lamp from fixture. The lamp should be replaced every 12 months, as UVC energy production diminishes over time. - 1 Obtain replacement lamp 102337-01 for your germicidal light model. - 2 Disconnect power to the rooftop unit before servicing the UVC kit. - 3 Open the blower access door. - 4 Remove the screw in wire tie from the UVC assembly and disconnect the 4-pin connector from the lamp end. - 5 Remove the (2) mounting screws of the UVC assembly. Carefully slide the complete UVC assembly out through the blower access door. - 6 Allow 10 minutes before touching the lamps. Then, carefully remove the old lamp from the lamp holder clips. - 7 Wear cotton gloves or use a cotton cloth when handling the new lamp. Place the new lamp in the holder clips of the UVC assembly. Verify that the lamp flange at the connector end is sandwiched between the lamp holder clip and the sheet-metal end stop (see FIGURE 39). - 8 Carefully place the UVC assembly on the blower deck. Line up the mounting holes on the UVC assembly with the mounting holes on the blower deck See FIGURE 40. Use the #10 screws provided to attach the UVC assembly in place. - 9 Make sure to reapply the black convoluted tubing used to shield electrical wiring in the rooftop unit. Convoluted tubing is provided when the ionizer is factory- or field-installed. However, if there is any concern, aluminum foil tape (not provided) can also be used to cover any exposed component. - 10 -Close the blower access door. - 11 Reconnect power to the rooftop unit. - 12 -Open the filter access door and look through the view port in the triangular sheet-metal panel to verify that the UVC light is on. FIGURE 39 Lamp Disposal **Hg-LAMP Contains Mercury** - Manage in accordance with local, state and federal disposal laws. Refer to www. lamprecycle.org or call 800-953-6669. ## Proper Clean-up Technique in Case of Lamp Breakage Wear protective gloves, eye wear and mask. Sweep the broken glass and debris into a plastic bag, seal the bag, and dispose of properly. Contact your local waste management office for proper disposal. ### Do not use a vacuum cleaner. Do not incinerate. #### **Maintenance** - For all maintenance, contact a qualified HVAC technician. - Read the maintenance instructions before opening unit panels. - Unintended use of the unit or damage to the unit housing may result in the escape of dangerous UVC radiation. UVC radiation may, even in small doses, cause harm to the eyes and skin. - Do not operate units that are obviously damaged. - Do not discard the triangular UVC light shield or any barriers with an ultraviolet radiation symbol. - Do not override the door interlock switch that interrupts power to the UVC light. - Do not operate the UVC light outside of the unit. ### L-Replacement Fuses See the following tables for the proper replacement fuse sizes. | | TABLE ' | 14 | | | |----|---------------------|---------|-------|------| | | ELECTRIC HEAT REPLA | ACEMENT | FUSES | | | | Florida Hori | | Rati | ng | | | Electric Heat | Qty. | Amp | Volt | | 1 | E1EH0050N-1P | 2 | 30 | 250 | | 2 | T1/E1EH0075AN1Y | 3 | 25 | 250 | | 3 | E1EH0100N-1P | 4 | 30 | 250 | | 4 | T1/E1EH0150AN1Y | 3 | 50 | 250 | | 5 | T1/E1EH0225AN1Y | 6 | 45 | 250 | | 6 | T1/E1EH0300N-1Y | 6 | 60 | 250 | | 7 | E2EH0300N-1Y | 6 | 60 | 250 | | 8 | K1EH0050A-1P | 2 | 30 | 250 | | 9 | T1E1EH0075AN1P | 2 | 40 | 250 | | 10 | T1EH0100A-1P | 4 | 30 | 250 | | 11 | T1/E1EH0150AN1P | 4 | 40 | 250 | | 12 | T1/E1EH0225AN1P | 6 | 40 | 250 | | 13 | T1/E1EH0075AN1J | 3 | 15 | 600 | | 14 | T1/E1EH0150AN1J | 3 | 20 | 600 | | 15 | T1/E1EH0225AN1J | 3 | 30 | 600 | | 16 | T1/E1EH0300N-1J | 3 | 40 | 600 | | 17 | T1/E1EH0075AN1G | 3 | 15 | 600 | | 18 | T1/E1EH0150AN1G | 3 | 25 | 600 | | 19 | T1/E1EH0225AN1G | 3 | 35 | 600 | | 20 | T1/E1EH0300N-1G | 3 | 50 | 600 | | 21 | K1/E1EH0057AN1M | 3 | 15 | 600 | | 22 | K1/E1EH0115AN1M | 3 | 20 | 600 | | 23 | K1EH0172AN1M | 3 | 30 | 600 | | 24 | E1EH0172N-1M | 3 | 30 | 600 | | 25 | K1/E1EH0230N-1M | 3 | 40 | 600 | | | LHT036H5E | | | | | | | | | | | | | | | | | | |---------------------|---|----------------|----|--------------|----|---------------|------|-------------|---------------|-------------|---------------|---------------|---------------|--------------|---------------|--------|------|--------| | Elect | ric Heat | Size | | | | 7.5 | KW | | | | | | | 15 H | KW | | | | | Ur | าit Voltaดู | ge | | 230V -
Ph | | 30V - 3
Ph | 460V | - 3 Ph
| 575V | - 3 Ph | | 30V - 1
Ph | | 30V - 3
h | 460V | - 3 Ph | 575V | - 3 Ph | | Power | Power Exhaust Option W/ W/O W/ W/O W/ W/O P.E. P. | | | | | | | W /
P.E. | W / O
P.E. | | | | | Dia-
gram
Key | Class | Blow-
er HP | | Amps | | | | | | | | | | Am | ps | | | | | F4 | RK or
K1 | 0.5 | 40 | 35 | 30 | 25 | 15 | 15 | 15 | 15 | 40 | 35 | 30 | 25 | 15 | 15 | 15 | 15 | | F4 | RK or
K1 | 1.5 | - | - | 30 | 25 | 15 | 15 | 15 | 15 | - | - | 30 | 25 | 15 | 15 | 15 | 15 | | F10 ² | CC | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | CC | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | - | - | - | - | - | - | 7.5 | 7.5 | | F30 | CC | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | F31 | CC | All | - | 15 | - | 15 | - | 15 | - | - | - | 15 | - | 15 | - | 15 | - | - | | F57 | CC | 0.5 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | F57 | CC | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 0.5 | 70 | 70 | 45 | 45 | 25 | 25 | 20 | 20 | 110 | 110 | 70 | 70 | 35 | 35 | 30 | 30 | | F61 ² | J | 1.5 | - | - | 45 | 45 | 25 | 25 | 20 | 20 | - | - | 70 | 70 | 35 | 35 | 30 | 30 | | CB10 ³ | - | 0.5 | 70 | 70 | 45 | 45 | 25 | 25 | 20 | 20 | 110 | 110 | 70 | 70 | 35 | 35 | 30 | 30 | | CB10 ³ | - | 1.5 | - | - | 45 | 45 | 25 | 25 | 20 | 20 | - | - | 70 | 70 | 35 | 35 | 30 | 30 | ³ Units using Circuit Breakers will use CB10 option. | | | | | | | | | LH1 | Г048Н5 | E | | | | | | | | | |---------------------|-------------|----------------|-------------|----------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------| | Elect | tric Heat | Size | | | | 7.5 | KW | | | | | | | 15 H | CW | | | | | Ur | nit Voltaç | ge | | 230V -
Ph | | 30V - 3
Ph | 460V | - 3 Ph | 575V | - 3 Ph | | 30V - 1
Ph | | 30V - 3
Ph | 460V | - 3 Ph | 575V | - 3 Ph | | Power | Exhaust | Option | W /
P.E. | W / O
P.E. | Dia-
gram
Key | Class | Blow-
er HP | Amps Amps | | | | | | | | | ps | | | | | | | | F4 | RK or
K1 | 1.0 | 50 | 50 | 35 | 35 | 20 | 20 | 15 | 15 | 50 | 50 | 35 | 35 | 20 | 20 | 15 | 15 | | F4 | RK or
K1 | 1.5 | - | - | 35 | 30 | 20 | 15 | 15 | 15 | - | - | 35 | 30 | 20 | 15 | 15 | 15 | | F10 ² | CC | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | CC | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | - | - | - | - | - | - | 7.5 | 7.5 | | F30 | CC | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | F31 | CC | All | - | 15 | - | 15 | - | 15 | - | - | - | 15 | - | 15 | - | 15 | - | - | | F57 | CC | 1.0 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | F57 | CC | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 1.0 | 80 | 80 | 60 | 50 | 30 | 25 | 25 | 20 | 125 | 125 | 80 | 80 | 40 | 40 | 30 | 30 | | F61 ² | J | 1.5 | - | - | 50 | 50 | 25 | 25 | 20 | 20 | - | - | 70 | 70 | 40 | 35 | 30 | 30 | | CB10 ³ | - | 1.0 | 80 | 80 | 60 | 50 | 30 | 25 | 25 | 20 | 125 | 125 | 80 | 80 | 40 | 40 | 30 | 30 | | CB10 ³ | - | 1.5 | - | 50 50 25 25 20 | | | | | | 20 | - | - | 70 | 70 | 40 | 35 | 30 | 30 | When SCCR is installed, F4 fuse is Class J. ¹ When SCCR is installed, F4 fuse is Class J. ² Fuses F10 and F61 are only used on units with SCCR installed. $^{^{\}rm 2}$ Fuses F10 and F61 are only used on units with SCCR installed. ³ Units using Circuit Breakers will use CB10 option. | | LHT060H5E | | | | | | | | | | | | | | | | | | |---------------------|-------------|----------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------| | Elect | tric Heat | Size | | | | 7.5 | KW | | | | | | | 15 k | (W | | | | | Ur | nit Voltaç | ge | | 230V -
Ph | | 30V - 3
Ph | 460V | - 3 Ph | 575V | - 3 Ph | | 30V - 1
Ph | | 30V - 3
h | 460V | - 3 Ph | 575V | - 3 Ph | | Power | Exhaust | Option | W /
P.E. | W / O
P.E. | Dia-
gram
Key | Class | Blow-
er HP | | Amps | | | | | | | | ` | | Am | ps | | | | | F4 | RK or
K1 | 1.0 | 60 | 60 | 40 | 35 | 20 | 15 | 15 | 15 | 60 | 60 | 40 | 35 | 20 | 15 | 15 | 15 | | F4 | RK or
K1 | 1.5 | - | - | 40 | 35 | 20 | 15 | 15 | 15 | - | - | 40 | 35 | 20 | 15 | 15 | 15 | | F10 ² | CC | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | CC | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | - | - | - | - | - | - | 7.5 | 7.5 | | F30 | CC | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | F31 | CC | All | - | 15 | - | 15 | - | 15 | - | - | - | 15 | - | 15 | - | 15 | - | - | | F57 | CC | 1.0 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | F57 | СС | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 1.0 | 90 | 90 | 50 | 50 | 25 | 25 | 25 | 20 | 125 | 125 | 80 | 70 | 40 | 35 | 30 | 30 | | F61 ² | J | 1.5 | - | - | 50 | 50 | 25 | 25 | 25 | 20 | - | - | 80 | 70 | 40 | 35 | 30 | 30 | | CB10 ³ | - | 1.0 | 90 | 90 | 50 | 50 | 25 | 25 | 25 | 20 | 125 | 125 | 80 | 70 | 40 | 35 | 30 | 30 | | CB10 ³ | - | 1.5 | - | - | 50 | 50 | 25 | 25 | 25 | 20 | - | - | 80 | 70 | 40 | 35 | 30 | 30 | | | | | | LHT | 60H5E conti | nued | | | | | |-------------------|---------------|-----------|--------------------|--------------------|----------------|----------------|--------------------|--------------------|----------------|----------------| | EI | ectric Heat S | ize | | | | 22.5 | KW | | | | | | Unit Voltage | • | 208/230V -
1 Ph | 208/230V -
3 Ph | 460V - 3
Ph | 575V - 3
Ph | 208/230V -
1 Ph | 208/230V -
3 Ph | 460V - 3
Ph | 575V - 3
Ph | | Pow | er Exhaust O | ption | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | | Diagram
Key | Class | Blower HP | | | | An | nps | | | | | F4 | RK or K1 | 1.0 | 60 | 60 | 40 | 35 | 20 | 15 | 15 | 15 | | F4 | RK or K1 | 1.5 | - | - | 40 | 35 | 20 | 15 | 15 | 15 | | F10 ² | СС | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | СС | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | | F30 | СС | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | F31 | СС | All | - | 15 | - | 15 | - | 15 | - | - | | F57 | СС | 1.0 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | F57 | СС | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 1.0 | 175 | 175 | 100 | 100 | 50 | 50 | 40 | 40 | | F61 ² | J | 1.5 | - | - | 100 | 100 | 50 | 50 | 40 | 40 | | CB10 ³ | - | 1.0 | 175 | 175 | 110 | 100 | 50 | 50 | 40 | 40 | | CB10 ³ | - | 1.5 | - | - | 100 | 100 | 50 | 50 | 40 | 40 | ¹ When SCCR is installed, F4 fuse is Class J. ² Fuses F10 and F61 are only used on units with SCCR installed. ³ Units using Circuit Breakers will use CB10 option. ¹ When SCCR is installed, F4 fuse is Class J. ² Fuses F10 and F61 are only used on units with SCCR installed. ³ Units using Circuit Breakers will use CB10 option. | | | | | | | LHT | Γ072H5E | | | | | | | | |-------------------|--|--------------|----|----|-----|-----|---------|----------|---------------|----------|---------------|-------------|---------------|--------| | Elec | tric Heat | Size | | | 7.5 | KW | | | | | 15 I | KW | | | | U | Unit Voltage 208/230V - 3 Ph 460V - 3 Ph 575V - 3 Ph | | | | | | | - 3 Ph | 208/230 | V - 3 Ph | 460V | - 3 Ph | 575V | - 3 Ph | | Power | Power Exhaust Option W/ P.E. W/O P.E. W/O P.E. W/O P.E. W/O P.E. W/O | | | | | | | W / P.E. | W / O
P.E. | W / P.E. | W / O
P.E. | W /
P.E. | W / O
P.E. | | | Diagram
Key | Class | Blower
HP | | | An | nps | | | Amps | | | | | | | F4 | RK or
K ¹ | 1.5 | 40 | 40 | 20 | 20 | 15 | 15 | 40 | 40 | 20 | 20 | 15 | 15 | | F10 ² | СС | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | CC | 1.5 | - | - | - | - | 7.5 | 7.5 | - | - | - | - | 7.5 | 7.5 | | F30 | CC | All | 10 | 10 | 5 | 5 | - | - | 10 | 10 | 5 | 5 | - | - | | F31 | CC | All | - | 15 | - | 15 | - | - | - | 15 | - | 15 | - | - | | F57 | СС | 1.5 | - | - | 10 | 10 | 7.5 | 7.5 | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 1.5 | 50 | 50 | 25 | 25 | 25 | 20 | 80 | 70 | 40 | 35 | 30 | 30 | | CB10 ³ | - | 1.5 | 50 | 50 | 25 | 25 | 25 | 20 | 80 | 70 | 40 | 35 | 30 | 30 | | | | | L | .HT072 continue | d | | | | | | |-------------------|----------------------|-----------|-------------------|-----------------|---------|---------|---------|---------|--|--| | E | lectric Heat Siz | е | | | 22.5 | KW | | | | | | | Unit Voltage | | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3 Ph | | | | Pov | ver Exhaust Op | tion | W/ P.E. | W/O P.E | W/ P.E. | W/O P.E | W/ P.E. | W/O P.E | | | | Diagram Key | Class | Blower HP | Amps | | | | | | | | | F4 | RK or K ¹ | 1.5 | 40 40 20 20 15 15 | | | | | | | | | F10 ² | CC | All | 8 | 8 | 8 | 8 | 8 | 8 | | | | F27 | CC | 1.5 | - | - | - | - | 7.5 | 7.5 | | | | F30 | CC | All | 10 | 10 | 5 | 5 | - | - | | | | F31 | CC | All | - | 15 | - | 15 | - | - | | | | F57 | CC | 1.5 | - | - | 10 | 10 | 7.5 | 7.5 | | | | F61² | J | 1.5 | 100 | 100 | 50 | 50 | 40 | 40 | | | | CB10 ³ | - | 1.5 | 100 | 100 | 50 | 50 | 40 | 40 | | | ¹ When SCCR is installed, F4 fuse is Class J. ¹ When SCCR is installed, F4 fuse is Class J. ² Fuses F10 and F61 are only used on units with SCCR installed. ³ Units using Circuit Breakers will use CB10 option. ² Fuses F10 and F61 are only used on units with SCCR installed. ³ Units using Circuit Breakers will use CB10 option. | | | | | UNIT RE | PLACEMEN | T FUSES | | | | | |-------------------|--------------|-----------|----------|------------|-----------|------------|----------|------------|----------
------------| | | | | | | LDT036H5E | | | | | | | | Unit Voltage |) | 208/230 | V - 1 Ph | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3Ph | | Powe | er Exhaust C | ption | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | | Diagram
Key | Class | Blower HP | | | | An | nps | , | | | | F10 ² | СС | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | СС | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | | F30 | СС | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | F31 | СС | All | - | 15 | - | 15 | - | 15 | - | - | | F57 | СС | 0.5 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | F57 | СС | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 0.5 | 40 | 35 | 30 | 25 | 15 | 15 | 15 | 15 | | F61 ² | J | 1.5 | - | - | 30 | 25 | 15 | 15 | 15 | 15 | | CB10 ³ | - | 0.5 | 40 | 35 | 30 | 25 | 15 | 15 | 15 | 15 | | CB10 ³ | - | 1.5 | - | - | 30 | 25 | 15 | 15 | 15 | 15 | $^{^{\}rm 2}$ Fuses F10 and F61 are only used on units with SCCR installed. $^{\rm 3}$ Units using Circuit Breakers will use CB10 option. | | UNIT REPLACEMENT FUSES | | | | | | | | | | | | |-------------------|------------------------|-----------|----------|------------|-----------|------------|----------|------------|----------|------------|--|--| | | | | | | LDT048H5E | | | | | | | | | | Unit Voltage | | 208/230 | V - 1 Ph | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3Ph | | | | Powe | er Exhaust C | ption | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | | | | Diagram
Key | Class | Blower HP | | | | An | nps | ^ | | | | | | F10 ² | CC | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | F27 | CC | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | | | | F30 | СС | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | | | F31 | СС | All | - | 15 | - | 15 | - | 15 | - | - | | | | F57 | СС | 1.0 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | | | F57 | CC | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | | | F61 ² | J | 1.0 | 50 | 50 | 35 | 35 | 20 | 20 | 15 | 15 | | | | F61 ² | J | 1.5 | - | - | 35 | 30 | 20 | 15 | 15 | 15 | | | | CB10 ³ | - | 1.0 | 50 | 50 | 35 | 35 | 20 | 20 | 15 | 15 | | | | CB10 ³ | - | 1.5 | - | - | 35 | 30 | 20 | 15 | 15 | 15 | | | ² Fuses F10 and F61 are only used on units with SCCR installed. ³ Units using Circuit Breakers will use CB10 option. | | | | | UNIT RE | PLACEMEN | T FUSES | | | | | |-------------------|--------------|-----------|----------|------------|-----------|------------|----------|------------|----------|------------| | | | | | | LDT060H5E | | | | | | | | Unit Voltage | | 208/230 | V - 1 Ph | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3Ph | | Powe | er Exhaust O | ption | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | | Diagram
Key | Class | Blower HP | | | | Am | nps | | | | | F10 ² | CC | All | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | F27 | CC | 1.5 | - | - | - | - | - | - | 7.5 | 7.5 | | F30 | CC | All | 10 | 10 | 10 | 10 | 5 | 5 | - | - | | F31 | CC | All | - | 15 | - | 15 | - | 15 | - | - | | F57 | CC | 1.0 | - | - | - | - | 3.5 | 3.5 | 5 | 5 | | F57 | CC | 1.5 | - | - | - | - | 10 | 10 | 7.5 | 7.5 | | F61 ² | J | 1.0 | 60 | 60 | 40 | 40 | 20 | 20 | 15 | 15 | | F61² | J | 1.5 | - | - | 40 | 35 | 20 | 15 | 15 | 15 | | CB10 ³ | - | 1.0 | 60 | 60 | 40 | 40 | 20 | 20 | 15 | 15 | | CB10 ³ | - | 1.5 | - | - | 40 | 35 | 20 | 15 | 15 | 15 | $^{^{\}rm 2}$ Fuses F10 and F61 are only used on units with SCCR installed. $^{\rm 3}$ Units using Circuit Breakers will use CB10 option. | | | | UNIT R | EPLACEMENT | FUSES | | | | | | | |-------------------|----------------|-----------|-----------|------------|----------|------------|----------|------------|--|--|--| | | | | | LDT072H5E | | | | | | | | | | Unit Voltage | | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3Ph | | | | | Pov | ver Exhaust Op | tion | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | W / P.E. | W / O P.E. | | | | | Diagram Key | Class | Blower HP | | | Am | ıps | | | | | | | F10 ² | CC | All | 8 8 8 8 8 | | | | | | | | | | F27 | CC | 1.5 | - | - | - | - | 7.5 | 7.5 | | | | | F30 | CC | All | 10 | 10 | 5 | 5 | - | - | | | | | F31 | CC | All | - | 15 | - | 15 | - | - | | | | | F57 | CC | 1.5 | - | - | 10 | 10 | 7.5 | 7.5 | | | | | F61² | J | 1.5 | 50 | 50 | 25 | 25 | 15 | 15 | | | | | CB10 ³ | - | 1.5 | 50 | 50 | 25 | 25 | 15 | 15 | | | | $^{^{\}rm 2}$ Fuses F10 and F61 are only used on units with SCCR installed. $^{\rm 3}$ Units using Circuit Breakers will use CB10 option. ## **Factory Unit Controller Settings** Use the mobile service app to adjust parameters; menu paths are shown in each table. Refer to the Unit Controller manual provided with each unit. When field installing optional kits and accessories, the Unit Controller must be configured to identify the option before it will function. Refer to FIGURE 41 and FIGURE 42 to determine whether the Unit Controller configuration I.D. must change. To configure the option, use MAIN MENU > SETUP > INSTALL menu path. Press SAVE until CONFIGURATION ID 1 or 2 appears depending on the option installed. Change the appropriate character in the configuration I.D. For example, when an economizer is installed using a single enthalpy sensor, change configuration I.D. 1, the second character, to "S". ## **Decommissioning** Before carrying out this procedure, it is essential that the technician is completely familiar with the equipment and all its detail. It is recommended good practice that all refrigerants are recovered safely. Prior to the task being carried out, an oil and refrigerant sample shall be taken in case analysis is required prior to re-use of recovered refrigerant. It is essential that electrical power is available before starting decommissioning. - a) Become familiar with the equipment and its operation. - b) Isolate system electrically. - c) Before attempting the procedure, ensure that: - mechanical handling equipment is available, if required, for handling refrigerant cylinders; - all personal protective equipment is available and being used correctly; - the recovery process is supervised at all times by a competent person; - recovery equipment and cylinders conform to the appropriate standards. - d) Pump down refrigerant system, if possible. - e) If a vacuum is not possible, make a manifold so that refrigerant can be removed from various parts of the system. - f) Make sure that cylinder is situated on the scales before recovery takes place. - g) Start the recovery machine and operate in accordance with instructions. - h) Do not overfill cylinders (no more than 80% volume liquid charge). - i) Do not exceed the maximum working pressure of the cylinder, even temporarily. - j) When the cylinders have been filled correctly and the process completed, make sure that the cylinders and the equipment are removed from site promptly and all isolation valves on the equipment are closed off. - k) Recovered refrigerant shall not be charged into another REFRIGERATING SYSTEM unless it has been cleaned and checked. # ▲ IMPORTANT Equipment shall be labelled stating that it has been decommissioned and emptied of refrigerant. The label shall be signed and dated. Ensure that there are labels on the equipment that state the flammability of the refrigerant used. FIGURE 41 FIGURE 42 ## **START-UP REPORT** | Job Name: | | | | | | | Inspections and Checks | | | | | | | | | |---|---|---------|--|--|-----------|-------|--|--------|-------------------------|---------|---|--------------|------|----|--| | Store NoStart-Up Date: | | | | | | - | Dama | age? | Ye | s No | | R454E | B 🗌 | | | | Address: | | | | | | | If yes | , repo | rted to: | | | | | | | | City:State: | | | | | | | | | | | | | | | | | Start-Up Contractor: | | | | | | | Verify factory and field-installed accessories. | | | | | | | | | | Technician: | | | | | | | Check electrical connections. Tighten if necessary. | | | | | | | | | | Model No.: | | | | | | | Supply voltage: L1-L2L1-L3L2-L3 | | | | | | | | | | Serial No.: | | | | | | | If unit contains a 208-230/240 volt transformer: | | | | | | | | | | RTU No.: Catalog No.: | | | | | | | Check primary transformer tap ☐ Transformer secondary voltage: | | | | | | | | | | 1(10 No | | | | | | | necks | | | - | | | | | | | Compressor | Pototion | | mhiant T | omn | | | | nn | | Supply | Nir Tom | n | | | | | Compressor Rotation ☐ Ambient Temp Compressor Amps Compressor Volts | | | | | | | | | Condenser Fan Amps | | | | | | | | L1 L2 L3 | | | L1-L2 L1-L3 L2-L3 | | | Disch | | | L1 L2 | | L3 | | L1 | | | | 1 | | | - · | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 4 | Blower Checks | | | | | | | Heating Checks - Electric | | | | | | | | | | | В | lower C | hecks | | |] | | | Heat | ing Che | cks - E | lectric | | | | | Pulley/Belt A | Alignmen | t 🗆 E | Blower R | | | | | | Temp.:_ | S | | | | | | | | Alignmen
Tight | t 🗆 E | Blower Ro
Belt Tens | ion | | | | | | S | Supply <i>A</i> | | | | | | Set Screws Nameplate A | Alignmen
Tight
Amps:
Amps | t | Blower Ro
Belt Tens
Volts: | Volts | | | | S Ope | Temp.:_
rate: □ | S | | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ | Alignmen
Tight
Amps:
Amps | t | Blower Ro
Belt Tens
Volts:
.1-L2 | Volts | | | Limits | | Temp.:_
rate: □ | S | Supply A | | | | | | Set Screws Nameplate A Motor L1_ L2_ | Alignmen
Tight
Amps:
Amps | t | Blower Roselt Tens Volts:1-L21-L3 | Volts | | | Limits 1 | S Ope | Temp.:_
rate: □ | S |
Amps | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ | Alignmen
Tight
Amps:
Amps | t | Blower Roselt Tens Volts: 1-L2 1-L3 2-L3 | Volts | | | Limits 1 2 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ | Alignmen
Tight
Amps:
Amps | t | Blower Roselt Tens Volts:1-L21-L3 | Volts | | | 1 2 3 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ | Alignmen
Tight
Amps:
Amps | t | Blower Roselt Tens Volts: 1-L2 1-L3 2-L3 cks - Ga | Volts | | | 1 2 3 4 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 13 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ | Alignmen
Tight
Amps:
Amps
Heati | t | Blower Research Tens Volts: | Volts s ure: | in. w.c. | | 1 2 3 4 5 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 13 14 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N | Alignmen Tight Amps: Amps Heati at. LF | t | Blower Roselt Tens Volts: 1-L2 1-L3 2-L3 cks - Ga et Pressu | Volts S Ure: Temp.:_ | _in. w.c. | | 1 2 3 4 5 6 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 13 14 15 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N Return Air To Altitude: | Alignmen Tight Amps: Amps Heati at. LF | t | Blower Roselt Tens Volts: 1-L2 1-L3 2-L3 cks - Ga et Pressu | Volts S Ure: Temp.:_ | _in. w.c. | | 1 2 3 4 5 6 7 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 13 14 15 16 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N Return Air To Altitude: CO ₂ %: | Alignmen Tight Amps: Amps Heati at. LF | t | Blower Roselt Tens Volts: 1-L2 1-L3 2-L3 cks - Ga et Pressu | Volts Volts s ure: Temp.:_ s Operat | _in. w.c. | | 1 2 3 4 5 6 7 8 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 13 14 15 16 17 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N Return Air To Altitude: | Alignmen Tight Amps: Amps Heati at. LF | t | Blower Roselt Tens Volts:1-L21-L32-L3 et Pressurpply Air ary Limit | Volts Volts s ure: Temp.:_ s Operat | in. w.c. | | 1 2 3 4 5 6 7 | S Ope | Temp.:_
rate: □ | S | Amps 10 11 12 13 14 15 16 | Air Tem | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N Return Air To Altitude: CO ₂ %: | Alignmen Tight Amps: Amps Heati at. LF | t | Blower Roselt Tens Volts:1-L21-L32-L3 et Pressurpply Air ary Limit | Volts Volts Is Ure: Temp.: S Operat | in. w.c. | | 1 2 3 4 5 6 7 8 | S Ope | Temp.:_rate: L2 | S | Amps 10 11 12 13 14 15 16 17 | L1 | ıp.: | | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N Return Air To Altitude: CO ₂ %: Gas Valv | Alignmen Tight Amps: Amps Heati at. LF | t | Blower Roselt Tens Volts:1-L21-L32-L3 et Pressurpply Air ary Limit | Volts Volts Is Ure: Temp.: S Operat | in. w.c. | | 1 2 3 4 5 6 7 8 9 | S Ope | Temp.:_rate: L2 | L3 | Amps 10 11 12 13 14 15 16 17 18 | L1 Eks mps | L2 | L3 | | | Set Screws Nameplate A Motor L1_ L2_ L3_ Fuel type: N Return Air To Altitude: CO2%: Gas Valv GV1 | Heati at LF | t | Blower Roselt Tens Volts:1-L21-L32-L3 et Pressurpply Air ary Limit | Volts Volts Is Ure: Temp.: S Operat | in. w.c. | | 1 2 3 4 5 6 7 8 | S Ope | Temp.:_ rate: L2 A Po | L3 | Amps 10 11 12 13 14 15 16 17 18 Ty Check | L1 Eks mps | ıp.: | L3 | |