WARNING Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional HVAC installer or equivalent, service agency, or the gas supplier #### **Table of Contents** | Dimensions | . 4 | |--------------------------------------|-----| | Parts Arrangement | . 5 | | Shipping and Packing List | | | General | . 6 | | Requirements | . 6 | | Unit Support | | | Duct Connection | . 8 | | Rigging Unit for Lifting | . 8 | | Horizontal Air Discharge | . 9 | | Condensate Drains | . 9 | | Connect Gas Piping (Gas Units) | 10 | | Pressure Test Gas Piping (Gas Units) | 10 | | Install Vent Cap | 11 | | High Altitude Derate | 11 | | | 11 | | Blower Operation and Adjustments | 12 | | Cooling Start-Up | 29 | | Refrigerant Leak Detection System | 34 | | | 37 | | Heating Operation and Adjustments | 38 | | Electric Heat Start-Up (ZCD Units) | 38 | | Preventative Maintenance / Repair | 39 | | Decommissioning | 46 | # INSTALLATION INSTRUCTIONS ZGD/ZCD036 3-Ton ZGD/ZCD048 4-Ton ZGD/ZCD060 5-Ton ZGD/ZCD074 6-Ton **GAS AND COOLING PACKAGED UNITS** 508704-01 5/2025 Supersedes 9/2024 R-454B # **A** CAUTION As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing. # **A** CAUTION As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing. # WARNING Only manufacturer approved auxiliary devices are permitted to be installed in this unit. # WARNING If this appliance is conditioning a space with an area smaller than TAmin or stored in a space with an area smaller than Amin as defined by this instruction, then that space must be without continuously operating open flames (e.g. an operating gas appliance) or other potential ignition sources (e.g. an operating electric heater or similar hot surface). A flame-producing device may be installed in the same space if the device is provided with an effective flame arrest system. # **A** CAUTION Auxiliary devices which may be a potential ignition source shall not be installed in the duct work. Examples of such potential ignition sources are hot surfaces with a temperature exceeding 700°C and electric switching devices. # **▲** CAUTION The appliance is not to be used by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction # **A** CAUTION Children should be supervised not to play with the appliance. # **▲** CAUTION Any personnel installing, decommissioning, or performaing maintenance on the unit must be properly trained with A2L refrigerants. # **A** CAUTION Servicing shall be performed only as recommended by the manufacturer. # WARNING - •This appliance must be installed in accordance with local and national wiring regulations. - •If the appliance is not fitted with an option for full disconnection from power, a means of disconnection must be incorporated in the fixed wiring in accordance with national and local wiring regulations. # **A** CAUTION Leak Detection System installed. Unit must be powered except for service. # WARNING - •Do not use means to accelerate the defrosting process or to clean, other than those recommended by the manufacturer. - •The appliance shall be stored in a room without continuously operating ignition sources (for example: open flames, an operating gas appliance, or an operating electric heater). - •Do not pierce or burn. - •Be aware that refrigerants may not contain an odor # WARNING Ducts connected to an appliance shall not contain a potential ignition source. # **▲** IMPORTANT Pipe work, including piping material, pipe routing, and installation shall include protection from physical damage in operation and service, and be in compliance with national and local codes and standards, such as ASHRAE 15, ASHRAE 15.2, IAPMO Uniform Mechanical Code, ICC International Mechanical Code, or CSA B52. All field joints shall be accessible for inspection prior to being covered or enclosed. # **▲** IMPORTANT Refrigerant sensors for refrigerant detection systems shall only be replaced with sensors specified by the appliance manufacture. # **▲** CAUTION This unit is equipped with electrically powered safety measures. To be effective, the unit must be electrically powered at all times after installation, other than when servicing. #### **A2L Refrigerant Considerations** Ensure that the work area is adequately ventilated before breaking into the system or conducting any hot work. A degree of ventilation shall continue during the period that the work is carried out. The ventilation should safely disperse any released refrigerant and preferably expel it externally into the atmosphere. Check that cabling will not be subject to wear, corrosion, excessive pressure, vibration, sharp edges or any other adverse environmental effects, taking into account the effects of aging or continual vibration from sources such as compressors or fans. Under no circumstances shall potential sources of ignition be used when searching for or detecting refrigerant leaks. A halide torch (or any other detector using a naked flame) shall not be used. Electronic leak detectors may be used to detect refrigerant leaks but, in the case of flammable refrigerants, the sensitivity may not be adequate, or may need re-calibration. (Detection equipment shall be calibrated in a refrigerant-free area.) Ensure that the detector is not a potential source of ignition and is suitable for the refrigerant used. Leak detection equipment shall be set at a percentage of the LFL of the refrigerant and shall be calibrated to the refrigerant employed, and the appropriate percentage of gas (25% maximum) is confirmed. Leak detection fluids are also suitable for use with most refrigerants but the use of detergents containing chlorine shall be avoided as the chlorine may react with the refrigerant and corrode the copper pipe-work. If a leak is suspected, all naked flames shall be removed/ extinguished. If a leakage of refrigerant is found which requires brazing, all of the refrigerant shall be recovered from the system, or isolated (by means of shut off valves) in a part of the system remote from the leak. When breaking into the refrigerant circuit to make repairs or for any other purpose – conventional procedures shall be used. However, for flammable refrigerants it is important that best practices be followed since flammability is a consideration. The following procedure shall be adhered to: - -Safely remove refrigerant following local and national regulations. - -Evacuate the circuit. - -Purge the circuit with inert gas. - -Evacuate. - -Purge the circuit with inert gas. - -Open the circuit The refrigerant charge shall be recovered into the correct recovery cylinders if venting is not allowed by local and national codes. For appliances containing flammable refrigerants, the system shall be purged with oxygenfree nitrogen to render the appliance safe for flammable refrigerants. This process might need to be repeated several times. Compressed air or oxygen shall not be used for purging refrigerant systems. Refrigerants purging shall be achieved by breaking the vacuum in the system with oxygen-free nitrogen and continuing to fill until the working pressure is achieved, then venting to atmosphere, and finally pulling down to a vacuum. This process shall be vented down to atmospheric pressure to enable work to take place. Ensure that the outlet for the vacuum pump is not close to any potential ignition sources and that ventilation is available. # **WARNING** To prevent serious injury or death: - 1- Lock-out. tag-out before performing maintenance. - 2- If system power is required (e.g., smoke detector maintenance) disable power to blower, remove fan belt where applicable, and ensure all controllers and thermostats are set to the OFF position before performing maintenance. - 3- Always keep hands, hair, clothing, jewelery, tools, etc., away from moving parts. ## ZGD 036, 048, 060, 074 Parts Arrangement # ZCD 036, 048, 060, 074 Parts Arrangement Page 5 508704-01 5/2025 #### **Shipping and Packing List** #### Package 1 of 1 contains: 1 - Assembled unit Check unit for shipping damage. Receiving party should contact last carrier immediately if shipping damage is found #### General These instructions are intended as a general guide and do not supersede local codes in any way. Authorities having jurisdiction should be consulted before installation. The ZGD units are available in three heating inputs. The ZCD cooling packaged rooftop unit is the same basic design as the ZGD unit except for the heating section. Optional electric heat is available for ZCD units. ZGD and ZCD units have identical refrigerant circuits with respective 3-, 4-5- and 6-ton cooling capacities. Availability of units and options varies by brand. #### Requirements See FIGURE 1 for unit clearances. # **A** NOTICE #### Roof Damage! This system contains both refrigerant and oil. Some rubber roofing material may absorb oil, causing the rubber to swell. Bubbles in the rubber roofing material can cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface. # WARNING Electric shock hazard and danger of explosion. Can cause injury, death or product or property damage. Turn off gas and electrical power to unit before performing any maintenance or servicing operations on the unit. Follow lighting instructions attached to unit when putting unit back into operation and after service or maintenance. # **▲** IMPORTANT The Clean Air Act of 1990 bans the intentional venting of
refrigerant (CFC's and HCFC's) as of July 1, 1992. Approved methods of recovery, recycling, or reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance. FIGURE 1 | ¹ Unit | A | B | C | D | Top | |-----------------------------------|-------------|-------------|--------------|-------------|-------------------| | Clearance | in.(mm) | in.(mm) | in.(mm) | in.(mm) | Clearance | | Service | 36 | 36 | 36* | 66 | Unob- | | Clearance | (914) | (914) | (914) | (1676) | structed | | Clearance to
Combusti-
bles | 36
(914) | 1
(25) | 1
(25) | 1
(25) | Unob-
structed | | Minimum
Operation
Clearance | 36
(914) | 36
(914) | 36*
(914) | 36
(914) | Unob-
structed | *Clearance is 60 in. (1524mm) in horizontal air flow applications. **NOTE** - Entire perimeter of unit base requires support when elevated above mounting surface. ¹Service Clearance - Required for removal of serviceable parts Clearance to Combustibles - Required clearance to combustible material (gas units). **Minimum Operation Clearance** - Required clearance for proper unit operation. Use of this unit as a construction heater or air conditioner is not recommended during any phase of construction. Very low return air temperatures, harmful vapors and operation of the unit with clogged or misplaced filters will damage the unit. If this unit has been used for heating or cooling of buildings or structures under construction, the following conditions must be met or the warranty will be void: - A room thermostat must control the unit. The use of fixed jumpers that will provide continuous heating or cooling is not allowed. - A pre-filter must be installed at the entry to the return air duct. - The return air duct must be provided and sealed to the unit. - Return air temperature range between 55°F (13°C) and 80°F (27°C) must be maintained. - Air filters must be replaced and pre-filters must be removed upon construction completion. - The input rate and temperature rise must be set per the unit rating plate. - The heat exchanger, components, duct system, air filters and evaporator coil must be thoroughly cleaned following final construction clean-up. - The unit operating conditions (including airflow, cooling operation, ignition, input rate, temperature rise and venting) must be verified according to these installation instructions. This appliance is not intended for use by persons (including children) with reduced physical, sensory, or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety. #### Minimum R454B Space and CFM Requirements | Minimum Airflow¹ | | | | | | | | | | |------------------|------------------------|------------------------|--|--|--|--|--|--|--| | Unit | Q _{min} (CFM) | Q _{min} (m³h) | | | | | | | | | ZGD/ZCD 036 | 108 | 184 | | | | | | | | | ZGD/ZCD 048 | 112 | 191 | | | | | | | | | ZGD/ZCD 060 | 122 | 208 | | | | | | | | | ZGD/ZCD 074 | 182 | 309 | | | | | | | | | Refrigerant Charge R-454B | | | | | | | | | | | |---------------------------|----------------------|---------------------|--|--|--|--|--|--|--|--| | Unit | M _c (lbs) | M _c (kg) | | | | | | | | | | ZGD/ZCD 036 | 4.10 | 1.86 | | | | | | | | | | ZGD/ZCD 048 | 4.25 | 1.93 | | | | | | | | | | ZGD/ZCD 060 | 4.63 | 2.10 | | | | | | | | | | ZGD/ZCD 074 | 6.88 | 3.12 | | | | | | | | | ¹ **NOTE -** The minimum airflow is the lowest CFM allowed during venting operation (leak mitigation). | Minimum Room Area of Conditioned Space ² | | | | | | | | | | | | |---|-----|-----|--|--|--|--|--|--|--|--|--| | Unit TA _{min} (ft²) TA _{min} (m²) | | | | | | | | | | | | | ZGD/ZCD 036 | 61 | 5.6 | | | | | | | | | | | ZGD/ZCD 048 | 63 | 5.8 | | | | | | | | | | | ZGD/ZCD 060 | 68 | 6.3 | | | | | | | | | | | ZGD/ZCD 074 | 101 | 9.4 | | | | | | | | | | ² **NOTE** - The minimum room area of conditioned space is the smallest area the unit can service. | | Altitude Adjustment Factor ³ | | | | | | | | | | | | | |------|---|------|------|------|------|------|------|------|------|--|--|--|--| | Halt | 0 200 400 600 800 1000 1200 1400 1600 | | | | | | | | | | | | | | AF | 1 | 1 | 1 | 1 | 1.02 | 1.05 | 1.07 | 1.1 | 1.12 | | | | | | Halt | 1600 | 1800 | 2000 | 2200 | 2400 | 2600 | 2800 | 3000 | 3200 | | | | | | AF | 1.12 | 1.15 | 1.18 | 1.21 | 1.25 | 1.28 | 1.32 | 1.36 | 1.4 | | | | | ³ **NOTE** - Use the Altitude Adjustment Factor to adjust the values in the tables above to different altitudes. Find the relevant altitude above sea level in the two "Halt" rows and then multiply the value needed from the tables above by the altitude factor number. Example: For the minimum airflow in CFM for an ZGD/ZCD036 at 1000 ft. above see level, multiply 108 by 1.05 to get 113.4 CFM as the new Q_{min}. Page 7 508704-01 5/2025 #### **Unit Support** In downflow discharge installations, install the unit on a non-combustible surface only. Unit may be installed on combustible surfaces when used in horizontal discharge applications or in downflow discharge applications when installed on a Z1CURB roof mounting frame. **NOTE -** Securely fasten roof frame to roof per local codes. # **▲** CAUTION To reduce the likelihood of supply / return air bypass and promote a proper seal with the RTU, duct work / duct drops / diffuser assemblies must be supported independently to the building structure. #### A-Downflow Discharge Application #### **Roof Mounting with Z1CURB** - 1 The Z1CURB roof mounting frame must be installed, flashed and sealed in accordance with the instructions provided with the frame. - 2 The Z1CURB roof mounting frame should be square and level to 1/16" per linear foot (5mm per linear meter) in any direction. - 3 Duct must be attached to the roof mounting frame and not to the unit; supply and return plenums must be installed before setting the unit. #### **Installer's Roof Mounting Frame** Many types of roof frames can be used to install the unit depending upon different roof structures. Items to keep in mind when using the building frame or supports are: - 1 The base is fully enclosed and not insulated, so an enclosed, insulated frame is required. - 2 The frames or supports must be constructed with non-combustible materials and should be square and level to 1/16" per linear foot (5mm per linear meter) in any direction. - 3 Frame or supports must be high enough to prevent any form of moisture from entering unit. Recommended minimum frame height is 14" (356mm). - 4 Duct must be attached to the roof mounting frame and not to the unit. Supply and return plenums must be installed before setting the unit. - 5 Units require support along all four sides of unit base. Supports must be constructed of steel or suitably treated wood materials. NOTE-When installing a unit on a combustible surface for downflow discharge applications, a Z1CURB roof mounting frame is required. #### **B-Horizontal Discharge Applications** Specified installation clearances must be maintained when installing units. Refer to FIGURE 1. - 2 Top of support slab should be approximately 4" (102mm) above the finished grade and located so no run-off water from higher ground can collect around the unit. - 3 Units require support along all four sides of unit base. Supports must be constructed of steel or suitably treated wood materials. #### **Duct Connection** All exterior ducts, joints and openings in roof or building walls must be insulated and weather-proofed with flashing and sealing compounds in accordance with applicable codes. Any duct passing through an unconditioned space must be insulated. # **▲** CAUTION In downflow applications, do not drill or punch holes in base of unit. Leaking in roof may occur if unit base is punctured. ## **Rigging Unit for Lifting** Rig unit for lifting by attaching four cables to holes in unit base rail. See FIGURE 2. - Connect rigging to the unit base using both holes in each corner. - 2 All panels must be in place for rigging. - 3 Place field-provided H-style pick in place just above top edge of unit. Frame must be of adequate strength and length. (H-style pick prevents damage to unit.) #### **Horizontal Air Discharge** Unit is shipped with panels covering the horizontal supply and return air openings. See FIGURE 3. FIGURE 3 - Remove horizontal covers and place a bead of silicone sealant on the underside of the duct cover flanges. See FIGURE 4. - 2 Position covers over downflow openings. Secure covers with self-drilling screws in at least two places on each cover. Drill through duct cover side into flange of base pan. - 3 Place a bead of silicone between insulation and duct cover to seal in insulation edges. Let silicone dry before running gas or electric heat. #### Units Equipped With An Optional Horizontal Economizer - Install the horizontal supply air cover over the down flow supply air opening as described above. - 2 Leave the horizontal return air cover in place. - 3 Locate the extra horizontal return cover that is included with the horizontal economizer kit. Install as described in previous section. - 4 Install return air duct on the intake air side of the horizontal economizer. See FIGURE 5. - 5 Horizontal economizer and return air duct must be field-supported. FIGURE 5 #### **Condensate Drains** Make drain connection to the 3/4" N.P.T. drain coupling provided on unit. **NOTE -** The drain pan is made with a glass reinforced engineered plastic capable of withstanding typical joint torque but can be damaged with excessive force. Tighten pipe nipple hand tight and turn an additional quarter turn. A trap must be installed between drain connection and an open vent for proper condensate removal. See FIGURE 6. It is sometimes acceptable to drain condensate onto the roof or grade; however, a tee should be fitted to the trap to direct condensate downward.
The condensate line must be vented. Check local codes concerning condensate disposal. Refer to page 4 for condensate drain location. Page 9 #### **Connect Gas Piping (Gas Units)** Before connecting field-provided piping, check with gas company or authorities having jurisdiction for local code requirements. When installing gas supply piping, length of run from gas meter must be considered in determining pipe size for 0.5" w.c. (.12kPa) maximum pressure drop. Do not use supply pipe smaller than unit gas connection. Operating pressures at the unit gas connection must be as shown in TABLE 1. TABLE 1 OPERATING PRESSURE AT GAS CONNECTION "w.c. | | Natura | al Gas | LP / Prop | ane Gas | |---------|--------|--------|-----------|---------| | | Min. | Max. | Min. | Max. | | 036-074 | 4.5 | 10.5 | 11 | 13 | When making piping connections a drip leg should be installed on vertical pipe runs to serve as a trap for sediment or condensate. A 1/8" N.P.T. plugged tap is located on gas valve for test gauge connection. Refer to Heating Start-Up section for tap location. Install a ground joint union between the gas control manifold and the main manual shut-off valve. See FIGURE 7 for gas supply piping entering outside the unit. Piping must be installed according to FIGURE 7 and FIGURE 8 to allow the door to open properly. Compounds used on threaded joints of gas piping shall be resistant to the action of liquefied petroleum gases. ### **Pressure Test Gas Piping (Gas Units)** When pressure testing gas lines, the gas valve must be disconnected and isolated. Gas valves can be damaged if subjected to more than 0.5 psig (3.48kPa). See FIGURE 9. **NOTE** - Codes may require that manual main shut-off valve and union (furnished by installer) be installed in gas line external to unit. Union must be of the ground joint type. After all connections have been made, check all piping connections for gas leaks. Also check existing unit gas connections up to the gas valve; loosening may occur during installation. Use a leak detection solution or other preferred means. Do not use matches, candles, or other sources of ignition to check for gas leaks. # **▲** CAUTION Some soaps used for leak detection are corrosive to certain metals. Carefully rinse piping thoroughly after leak test has been completed. Do not use matches, candles, flame or other sources of ignition to check for gas leaks. FIGURE 7 FIGURE 8 # WARNING Danger of explosion. Can cause injury or product or property damage. Do not use matches, candles, flame or other sources of ignition to check for leaks. **NOTE** - In case emergency shut down is required, turn off the main manual shut-off valve and disconnect main power to unit. These devices should be properly labeled by the installer. #### **Install Vent Cap** Remove the vent cap from the shipping location and use existing screws to install the vent cap over the flue outlet. See FIGURE 10. The installed vent cap is shown in the Parts Arrangement in the front of this manual. FIGURE 10 #### **High Altitude Derate** Locate the high conversion sticker in the unit literature bag. Fill out the conversion sticker and affix next to the unit nameplate. Refer to TABLE 2 for high altitude adjustments. #### TABLE 2 HIGH ALTITUDE DERATE | Altitude Ft.* | Gas Manifold Pressure | |----------------|--------------------------------------| | 2000-4500 | See Unit Nameplate | | 4500 and Above | Derate 2% / 1000 Ft. Above Sea Level | *Units installed at 0-2000 feet do not need to be modified. **NOTE -** This is the only permissible derate for these units. #### **Electrical Connections** #### **POWER SUPPLY** Do not apply power or close disconnect switch until installation is complete. Refer to start-up directions. Refer closely to unit wiring diagram. Refer to unit nameplate for minimum circuit ampacity and maximum fuse size. - 1 Units are factory-wired for 230, 460, or 575 volt supply. For 208V supply, remove the insulated terminal cover from the 208V terminal on the control transformer. Move the wire from the transformer 240V terminal to the 208V terminal. Place the insulated terminal cover on the unused 240V terminal. - 2 Route power through the side or bottom power entry area. For bottom power entry, a bottom power entry kit must be used. Connect power wiring to K1/K3 contactors in the control box. See FIGURE 11 or FIGURE 12. On ZCD units equipped with electric heat, route power wiring to TB2; see parts arrangement for location. See unit wiring diagram. FIGURE 11 ### FIGURE 12 S4T CONTROL WIRING Connect either a thermostat, room/zone sensor, or direct digital controller; one of the three are required for unit function. Refer to the literature provided with each device and the following information. **NOTE -** Optional wireless sensors are available for use with this unit. #### **A-Thermostat Location** Room thermostat mounts vertically on a standard 2" X 4" handy box or on any non-conductive flat surface. Locate thermostat approximately 5 feet (1524mm) above the floor in an area with good air circulation at average temperature. Avoid locating the room thermostat where it might be affected by: - drafts or dead spots behind doors and in corners - hot or cold air from ducts - radiant heat from sun or appliances - concealed pipes and chimneys #### **B-Control Wiring** 1 - Route thermostat cable or wires from subbase to control panel (refer to unit dimensions to locate bottom and side power entry). IMPORTANT - Unless field thermostat wires are rated for maximum unit voltage, they must be routed away from line voltage wiring. Use 18 AWG wire for all applications using remotely installed electro-mechanical and electronic thermostats. 2 - Install thermostat assembly in accordance with instructions provided with thermostat. Connect thermostat wiring to terminal block in control panel (A194). Wire as shown in FIGURE 13 for electromechanical and electronic thermostats. If using other temperature control devices or energy management systems see instructions and wiring diagram provided by manufacturer. #### FIGURE 13 IMPORTANT - Terminal connections at the wall plate or subbase must be made securely. Loose control wire connections may allow unit to operate but not with proper response to room demand. #### **Blower Operation and Adjustments** Units are equipped with one of two factory-installed blower options. The ninth character in the model number identifies the blower as follows: E= Three-, four-, and five-ton units are equipped with a variable speed (ECM) direct drive blower. B= Units are equipped with a single-stage belt drive blower. ZGD/ZCD074S5T units are equipped with two-stage blowers. The blower will operate at high speed with a Y2 thermostat demand and low speed with a Y1 thermostat demand. Low speed operation delivers approximately % of the air volume of high speed. Two-speed blower operation results in lower energy consumption. # **▲ IMPORTANT** Three phase scroll compressors must be phased sequentially for correct compressor and blower rotation. Follow "COOLING START-UP" section of installation instructions to ensure proper compressor and blower operation. #### **A-Blower Operation** Initiate blower demand at thermostat according to instructions provided with thermostat. Unit will cycle on thermostat demand. The following steps apply to applications using a typical electro-mechanical thermostat. - Blower operation is manually set at the thermostat subbase fan switch. With fan switch in **ON** position, blowers will operate continuously. - 2 With fan switch in AUTO position, the blowers will cycle with demand. Blowers and entire unit will be off when system switch is in OFF position. #### **B-Determining Unit CFM - Belt Drive Blowers** **IMPORTANT -** ZGD/ZCD074S5T blower (G thermostat) **CFM MUST BE ADJUSTED IN HIGH SPEED**. See TABLE 3. TABLE 3 TWO-SPEED BLOWER OPERATION ZGD/ZCD074ST UNITS | Thermostat | Blower Speed | |------------|--------------| | G | Low | | W1 | High | | W2 | High | | Y1 | Low | | Y2 | High | - 1 The following measurements must be made with air filters in place. - 2 With all access panels in place, measure static pressure external to unit (from supply to return). Blower performance data is based on static pressure readings taken in locations shown in FIGURE 14. **NOTE** - Static pressure readings can vary if not taken where shown. Referring to belt drive blower tables, use static pressure and RPM readings to determine unit CFM. Use page 27 when installing units with any of the options or accessories listed. Refer to TABLE 6 for minimum airflow when electric heat is installed. 3 - The blower RPM can be adjusted at the motor pulley. Loosen Allen screw and turn adjustable pulley clockwise to increase CFM. Turn counterclockwise to decrease CFM. See FIGURE 15. Do not exceed minimum and maximum number of pulley turns as shown in TABLE 4. TABLE 4 MINIMUM AND MAXIMUM PULLEY ADJUSTMENT | Belt | Min. Turns Open | Max. Turn Open | |-----------|-----------------|----------------| | A Section | No minimum | 5 | 4 - ZGD/ZCD074S5T Unit Only #### **C-Determining Unit CFM - Direct Drive Blowers** - Referring to direct drive blower tables, use static pressure and RPM readings to determine unit CFM. Use page 27 when installing units with any of the options or accessories listed. - 2 If the design CFM is too low, use FIGURE 16 or FIGURE17 to move the control lead to a higher setting. FIGURE 14 FIGURE 15 FIGURE 17 #### **D-Blower Belt Adjustment** Maximum life and wear can be obtained from belts only if proper pulley alignment and belt tension are maintained. Tension new belts after a 24-48 hour period of operation. This will allow belt to stretch and seat into grooves. Make sure blower and motor pulley are aligned as shown in FIGURE 18. - 1 Loosen four bolts securing motor base to mounting frame. See FIGURE 15. - 2 To increase belt tension Slide blower motor downward to tighten the belt. This increases the distance between the blower motor and
the blower housing. - 3 To loosen belt tension - Slide blower motor upward to loosen the belt. This decreases the distance between the blower motor and the blower housing. - 4 Tighten four bolts securing motor base to the mounting frame. FIGURE 18 #### **E-Check Belt Tension** Overtensioning belts shortens belt and bearing life. Check belt tension as follows: 1 - Measure span length X. See FIGURE 16. #### FIGURE 19 - 2 Apply perpendicular force to center of span (X) with enough pressure to deflect belt 1/64" for every inch of span length or 1.5mm per 100mm of span length. Example: Deflection distance of a 40" span would be 40/64" or 5/8". - Example: Deflection distance of a 400mm span would be 6mm. - 3 Measure belt deflection force. For a used belt, the deflection force should be 5 lbs. (35kPa). A new belt deflection force should be 7 lbs. (48kPa). A force below these values indicates an undertensioned belt. A force above these values indicates an overtensioned belt. #### F-Field-Furnished Blower Drives For field-furnished blower drives, use belt drive blower tables to determine BHP and RPM required. Reference page 27 for additional air resistance and page 29 to determine the drive kit number. See TABLE 5 for drive component manufacturers numbers. ## ZGD036S5E DIRECT DRIVE (SINGLE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for wet coil and options/accessory air resistance data. #### **DOWNFLOW** | | ВІ | ower Or | nly | | | Low S | Speed | | | High Speed | | | | | | | Free Cooling | | | |--|---------------------------------|---------|-----|---|-------|-------|-------|-------|--|------------|-------|--|------|-------|------------|---|--------------|------|--| | External
Static
Press.
in. w.g. | tatic ress. Low and High Speed: | | | • | | | | | 2nd Stage Heating:
W2 (Pin 2 and 4) | | | 1st Stage Heating:
W1 (Pin 3)
2nd Stage Heating:
W2 (Pin 3 and 4) | | | :
id 5) | Low and High Speed:
Y1 (Pin 1 and 5) | | | | | | CFM | Watts | RPM | | | 0 | 752 | 47 | 407 | 1127 | 142 | 623 | 1474 | 294 | 803 | 1664 | 404 | 887 | 1474 | 294 | 803 | 1474 | 294 | 803 | | | 0.1 | 694 | 53 | 482 | 1089 | 150 | 668 | 1445 | 304 | 835 | 1636 | 419 | 922 | 1445 | 304 | 835 | 1445 | 304 | 835 | | | 0.2 | 627 | 60 | 535 | 1049 | 158 | 713 | 1414 | 314 | 871 | 1613 | 430 | 949 | 1414 | 314 | 871 | 1414 | 314 | 871 | | | 0.3 | 560 | 66 | 602 | 1007 | 167 | 760 | 1389 | 323 | 898 | 1579 | 445 | 987 | 1389 | 323 | 898 | 1389 | 323 | 898 | | | 0.4 | 502 | 70 | 694 | 965 | 175 | 805 | 1350 | 335 | 940 | 1556 | 454 | 1011 | 1350 | 335 | 940 | 1350 | 335 | 940 | | | 0.5 | | | | 923 | 183 | 849 | 1314 | 347 | 978 | 1522 | 466 | 1045 | 1314 | 347 | 978 | 1314 | 347 | 978 | | | 0.6 | | | | 881 | 191 | 891 | 1287 | 356 | 1008 | 1488 | 475 | 1076 | 1287 | 356 | 1008 | 1287 | 356 | 1008 | | | 0.7 | | | | 826 | 201 | 945 | 1251 | 367 | 1045 | 1442 | 485 | 1114 | 1251 | 367 | 1045 | 1251 | 367 | 1045 | | | 0.8 | | | | 785 | 208 | 983 | 1219 | 377 | 1078 | 1408 | 490 | 1140 | 1219 | 377 | 1078 | 1219 | 377 | 1078 | | | 0.9 | | | | 646 | 190 | 836 | 1181 | 389 | 1117 | 1363 | 494 | 1170 | 1181 | 389 | 1117 | 1181 | 389 | 1117 | | | 1.0 | | | | 618 | 195 | 863 | 1147 | 400 | 1152 | 1317 | 494 | 1196 | 1147 | 400 | 1152 | 1147 | 400 | 1152 | | #### **HORIZONTAL** | | ВІ | ower Or | nly | Low Speed | | | | | | High Speed | | | | | | Free Cooling | | | |--|--|---------|-----|-----------|---|---------|------|--|------|--|-------|------|------------------------------|-------|------|---|-------|------| | External
Static
Press.
in. w.g. | Static Press. Low and High Speed G (Pin 1) | | | V | tage Heal
V1 (Pin 2
Cooling
Pin 2 an | 2)
: | | 2nd Stage Heating:
W2 (Pin 2 and 4) | | 1st Stage Heating:
W1 (Pin 3)
2nd Stage Heating:
W2 (Pin 3 and 4) | | | Cooling:
Y1 (Pin 3 and 5) | | | Low and High Speed:
Y1 (Pin 1 and 5) | | | | | CFM | Watts | RPM | | 0 | 737 | 50 | 416 | 1255 | 179 | 671 | 1539 | 311 | 794 | 1666 | 386 | 850 | 1588 | 340 | 818 | 1539 | 311 | 794 | | 0.1 | 676 | 56 | 485 | 1221 | 188 | 701 | 1509 | 321 | 827 | 1637 | 402 | 886 | 1560 | 350 | 849 | 1509 | 321 | 827 | | 0.2 | 606 | 62 | 560 | 1179 | 199 | 749 | 1475 | 334 | 866 | 1614 | 414 | 914 | 1527 | 363 | 885 | 1475 | 334 | 866 | | 0.3 | 536 | 68 | 628 | 1138 | 209 | 795 | 1446 | 344 | 896 | 1580 | 430 | 954 | 1493 | 376 | 921 | 1446 | 344 | 896 | | 0.4 | 475 | 73 | 683 | 1096 | 219 | 840 | 1411 | 357 | 935 | 1545 | 445 | 991 | 1460 | 388 | 958 | 1411 | 357 | 935 | | 0.5 | | | | 1053 | 229 | 883 | 1375 | 369 | 972 | 1510 | 457 | 1027 | 1426 | 401 | 993 | 1375 | 369 | 972 | | 0.6 | | | | 1012 | 239 | 925 | 1341 | 381 | 1010 | 1475 | 468 | 1060 | 1393 | 413 | 1029 | 1341 | 381 | 1010 | | 0.7 | | | | 960 | 250 | 975 | 1305 | 393 | 1047 | 1441 | 478 | 1090 | 1359 | 426 | 1064 | 1305 | 393 | 1047 | | 0.8 | | | | 918 | 259 | 1012 | 1263 | 408 | 1090 | 1394 | 487 | 1128 | 1326 | 438 | 1100 | 1263 | 408 | 1090 | | 0.9 | | | | 873 | 268 | 1060 | 1216 | 423 | 1138 | 1360 | 492 | 1153 | 1281 | 454 | 1146 | 1216 | 423 | 1138 | | 1.0 | | | | 826 | 277 | 1094 | 1180 | 435 | 1173 | 1314 | 496 | 1183 | 1247 | 466 | 1181 | 1180 | 435 | 1173 | ## ZGD048S5E DIRECT DRIVE (SINGLE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for wet coil and options/accessory air resistance data. #### **DOWNFLOW** | | ВІ | ower Or | nly | | | Low S | Speed | | | | | High \$ | Speed | | | Fre | ee Cooli | ing | |--|--------|---------------------|-----|------|---|---------|-------|---------------------|------|-------|---|--------------|-------|---------------------|------|------|---------------------|------| | External
Static
Press.
in. w.g. | Low an | nd High
G (Pin 1 | | ۷ | tage Heal
V1 (Pin 2
Cooling
Pin 2 an | 2)
: | | tage He
Pin 2 ar | | 2nd S | tage He
V1 (Pin :
tage He
Pin 3 aı | 3)
ating: | | Cooling
Pin 3 an | | | nd High
Pin 1 ar | | | | CFM | Watts | RPM | | 0 | 933 | 82 | 507 | 1724 | 438 | 911 | 1514 | 294 | 779 | 1832 | 529 | 970 | 2051 | 754 | 1084 | 1884 | 579 | 998 | | 0.1 | 884 | 90 | 568 | 1699 | 450 | 940 | 1477 | 306 | 820 | 1810 | 540 | 994 | 2017 | 750 | 1100 | 1864 | 591 | 1021 | | 0.2 | 829 | 99 | 634 | 1672 | 462 | 970 | 1441 | 318 | 859 | 1784 | 553 | 1022 | 1976 | 746 | 1119 | 1838 | 606 | 1050 | | 0.3 | 787 | 105 | 681 | 1636 | 478 | 1010 | 1406 | 329 | 897 | 1748 | 570 | 1060 | 1935 | 743 | 1138 | 1806 | 622 | 1084 | | 0.4 | 732 | 113 | 739 | 1609 | 491 | 1040 | 1359 | 345 | 948 | 1722 | 583 | 1089 | 1894 | 739 | 1156 | 1779 | 636 | 1113 | | 0.5 | 676 | 120 | 794 | 1582 | 503 | 1070 | 1324 | 356 | 985 | 1696 | 597 | 1117 | 1853 | 736 | 1174 | 1755 | 647 | 1138 | | 0.6 | 621 | 127 | 844 | 1555 | 515 | 1099 | 1289 | 367 | 1022 | 1670 | 610 | 1146 | 1812 | 732 | 1192 | 1723 | 660 | 1169 | | 0.7 | 552 | 134 | 901 | 1528 | 527 | 1128 | 1254 | 378 | 1058 | 1644 | 623 | 1174 | 1757 | 728 | 1214 | 1694 | 670 | 1195 | | 0.8 | 510 | 138 | 932 | 1492 | 542 | 1167 | 1219 | 389 | 1093 | 1617 | 636 | 1203 | 1716 | 726 | 1231 | 1666 | 679 | 1219 | | 0.9 | | | | 1465 | 554 | 1195 | 1190 | 399 | 1122 | 1591 | 649 | 1231 | 1675 | 723 | 1247 | 1634 | 686 | 1245 | | 1.0 | | | | 1442 | 564 | 1219 | 1158 | 409 | 1155 | 1560 | 665 | 1265 | 1627 | 720 | 1265 | 1592 | 691 | 1273 | #### **HORIZONTAL** | | ВІ | ower Or | nly | | | Low S | Speed | | | | | High : | Speed | | | Fre | ee Cool | ing | |--|--------|----------------------|-----|------|---|---------|-------|----------------------|------|-------|---|--------------|-------|---------------------|------|------|---------------------|------| | External
Static
Press.
in. w.g. | Low ar | nd High
G (Pin 1) | | V | tage Heal
V1 (Pin 2
Cooling
Pin 2 an | 2)
: | | tage He
(Pin 2 ar | _ | 2nd S | tage He
V1 (Pin 3
tage He
Pin 3 ar | 3)
ating: | | Cooling
Pin 3 ar | | l | nd High
Pin 1 ar | • | | | CFM | Watts | RPM | | 0 | 935 | 82 | 508 | 1746 | 434 | 900 | 1524 | 292 | 794 | 1858 | 518 | 1043 | 2089 | 756 | 1068 | 1914 | 569 | 1030 | | 0.1 | 886 | 90 | 572 | 1724 | 445 | 927 | 1497 | 302 | 825 | 1834 | 532 | 988 | 2066 | 754 | 1081 | 1893 | 582 | 1007 | | 0.2 | 845 | 97 | 624 | 1697 | 458 | 960 | 1465 | 314 | 863 | 1807 | 546 | 939 | 2021 | 750 | 1102 | 1865 | 600 | 996 | | 0.3 | 803 | 104 | 673 | 1669 | 472 | 993 | 1433 | 326 | 901 | 1781 | 560 | 908 | 1976 | 746 | 1123 | 1841 | 614 | 989 | | 0.4 | 748 | 112 | 733 | 1642 | 485 | 1025 | 1402 | 337 | 938 | 1754 | 574 | 897 | 1946 | 744 | 1144 | 1812 | 629 | 997 | | 0.5 | 692 | 119 | 789 | 1606 | 502 | 1068 | 1370 | 349 | 974 | 1728 | 588 | 904 | 1887 | 739 | 1165 | 1784 | 643 |
1014 | | 0.6 | 637 | 126 | 839 | 1579 | 515 | 1099 | 1338 | 360 | 1011 | 1701 | 602 | 930 | 1857 | 737 | 1194 | 1755 | 655 | 1041 | | 0.7 | 554 | 135 | 905 | 1552 | 528 | 1130 | 1295 | 376 | 1059 | 1666 | 620 | 995 | 1797 | 733 | 1215 | 1722 | 668 | 1089 | | 0.8 | 505 | 139 | 937 | 1515 | 545 | 1171 | 1263 | 387 | 1095 | 1640 | 633 | 1065 | 1752 | 730 | 1236 | 1694 | 678 | 1138 | | 0.9 | | | | 1488 | 558 | 1202 | 1232 | 398 | 1130 | 1613 | 646 | 1153 | 1692 | 726 | 1264 | 1652 | 684 | 1204 | | 1.0 | | | | 1466 | 568 | 1227 | 1200 | 410 | 1165 | 1582 | 661 | 1281 | 1632 | 723 | 1288 | 1619 | 689 | 1283 | Page 17 508704-01 5/2025 ## ZGD060S5E DIRECT DRIVE (SINGLE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for wet coil and options/accessory air resistance data. #### **DOWNFLOW** | | l | wer O | nly | | | | Lo | w Spe | ed | | | | | | | Hiç | h Spe | ed | | | | Free | e Coo | ling | |------------------------------|------|------------------------|-----|------|-----------------------------|------|------|----------------------------|------|-------|------------------|--------------|------|-----------------------------|------|------|----------------------------|------|------------|------------------|-------------|------|--------------------------|------| | Static
Press.
in. w.g. | Low | and I
Speed
(Pin | : | Н | st Stag
eating
1 (Pin | g: | | d Sta
eating
Pin 2 a | g: | V1 (P | ooling
in 2 a | g:
ind 5) | н | st Stag
eating
1 (Pin | g: | 1 | d Sta
eating
Pin 3 a | _ | C
Y1 (P | ooling
in 3 a | g:
nd 5) | l . | and I
Speed
in 1 a | • | | 9. | CFM | Watts | RPM | CFM | Watts | ı | | | | 1 | | 1 | | 0 | 1076 | 108 | 495 | 1708 | 387 | 602 | 1938 | 553 | 860 | 1846 | 469 | 781 | 1708 | 387 | 602 | 2263 | 916 | 1027 | 2108 | 746 | 964 | 2108 | 746 | 964 | | 0.1 | 1017 | 118 | 551 | 1677 | 398 | 680 | 1910 | 566 | 884 | 1818 | 481 | 816 | 1677 | 398 | 680 | 2230 | 928 | 1048 | 2082 | 760 | 987 | 2082 | 760 | 987 | | 0.2 | 966 | 126 | 598 | 1642 | 411 | 758 | 1879 | 581 | 912 | 1785 | 495 | 855 | 1642 | 411 | 758 | 2190 | 942 | 1073 | 2054 | 776 | 1012 | 2054 | 776 | 1012 | | 0.3 | 915 | 135 | 644 | 1602 | 425 | 831 | 1837 | 601 | 949 | 1742 | 513 | 900 | 1602 | 425 | 831 | 2150 | 952 | 1096 | 2018 | 797 | 1045 | 2018 | 797 | 1045 | | 0.4 | 847 | 145 | 703 | 1573 | 436 | 885 | 1815 | 612 | 970 | 1719 | 523 | 926 | 1573 | 436 | 885 | 2110 | 960 | 1118 | 1990 | 812 | 1069 | 1990 | 812 | 1069 | | 0.5 | 796 | 153 | 745 | 1532 | 451 | 939 | 1775 | 630 | 1004 | 1676 | 541 | 967 | 1532 | 451 | 939 | 2070 | 966 | 1139 | 1962 | 828 | 1093 | 1962 | 828 | 1093 | | 0.6 | 745 | 160 | 786 | 1497 | 463 | 979 | 1743 | 644 | 1031 | 1643 | 555 | 998 | 1497 | 463 | 979 | 2030 | 969 | 1158 | 1934 | 843 | 1117 | 1934 | 843 | 1117 | | 0.7 | 694 | 167 | 825 | 1456 | 478 | 1014 | 1712 | 658 | 1058 | 1609 | 569 | 1027 | 1456 | 478 | 1014 | 1990 | 969 | 1176 | 1906 | 858 | 1140 | 1906 | 858 | 1140 | | 0.8 | 643 | 174 | 863 | 1415 | 492 | 1038 | 1670 | 677 | 1093 | 1565 | 587 | 1061 | 1415 | 492 | 1038 | 1950 | 968 | 1192 | 1870 | 877 | 1171 | 1870 | 877 | 1171 | | 0.9 | 592 | 180 | 900 | 1381 | 505 | 1047 | 1639 | 691 | 1120 | 1533 | 601 | 1085 | 1381 | 505 | 1047 | 1897 | 961 | 1212 | 1842 | 892 | 1194 | 1842 | 892 | 1194 | | 1.0 | 558 | 184 | 923 | 1345 | 517 | 1042 | 1612 | 703 | 1141 | 1503 | 612 | 1102 | 1345 | 517 | 1042 | 1857 | 953 | 1225 | 1819 | 904 | 1213 | 1819 | 904 | 1213 | #### **HORIZONTAL** | | | wer O | nly | | | | Lo | w Spe | ed | | | | | | | Hiç | gh Spe | eed | | | | Fre | e Coo | ling | |--|------|------------------------|-----|------|-----------------------------|------|------|----------------------------|------|------|------------------|--------------|------|------------------------------|------|------|------------------------------|------|-------|------------------|-------------|------|--------------------------|------| | External
Static
Press.
in. w.g. | Low | and I
Speed
(Pin | : | Н | st Stag
eating
1 (Pin | g: | н | d Sta
eating
Pin 2 a | g: | | ooling
in 2 a | g:
ind 5) | н | st Stag
leating
1 (Pin | g: | Н | nd Sta
leating
Pin 3 a | g: | V1 /E | ooling
in 3 a | ر
مما 13 | 5 | and l
Speed
in 1 a | • | | 9. | CFM | Watts | RPM | 0 | 1061 | 111 | 507 | 1693 | 386 | 764 | 1926 | 555 | 862 | 1825 | 472 | 820 | 1693 | 386 | 764 | 2244 | 870 | 992 | 2131 | 739 | 945 | 2131 | 739 | 945 | | 0.1 | 1015 | 119 | 551 | 1662 | 398 | 792 | 1897 | 568 | 887 | 1796 | 484 | 846 | 1662 | 398 | 792 | 2224 | 885 | 1012 | 2097 | 753 | 970 | 2097 | 753 | 970 | | 0.2 | 965 | 127 | 597 | 1627 | 410 | 822 | 1866 | 581 | 913 | 1764 | 498 | 874 | 1627 | 410 | 822 | 2189 | 909 | 1043 | 2068 | 765 | 992 | 2068 | 765 | 992 | | 0.3 | 915 | 135 | 642 | 1581 | 427 | 863 | 1827 | 598 | 947 | 1722 | 516 | 912 | 1581 | 427 | 863 | 2166 | 922 | 1062 | 2038 | 778 | 1015 | 2038 | 778 | 1015 | | 0.4 | 865 | 143 | 685 | 1552 | 437 | 888 | 1802 | 609 | 968 | 1699 | 525 | 931 | 1552 | 437 | 888 | 2131 | 940 | 1089 | 2000 | 797 | 1046 | 2000 | 797 | 1046 | | 0.5 | 798 | 153 | 741 | 1512 | 452 | 923 | 1763 | 627 | 1001 | 1658 | 542 | 967 | 1512 | 452 | 923 | 2097 | 953 | 1114 | 1970 | 812 | 1070 | 1970 | 812 | 1070 | | 0.6 | 765 | 157 | 767 | 1478 | 465 | 953 | 1733 | 641 | 1028 | 1626 | 556 | 995 | 1478 | 465 | 953 | 2062 | 963 | 1136 | 1941 | 827 | 1095 | 1941 | 827 | 1095 | | 0.7 | 698 | 167 | 819 | 1443 | 477 | 983 | 1701 | 655 | 1055 | 1593 | 569 | 1023 | 1443 | 477 | 983 | 2027 | 968 | 1156 | 1912 | 844 | 1120 | 1912 | 844 | 1120 | | 0.8 | 648 | 173 | 855 | 1397 | 494 | 1023 | 1663 | 673 | 1088 | 1551 | 587 | 1060 | 1397 | 494 | 1023 | 1981 | 970 | 1178 | 1882 | 860 | 1146 | 1882 | 860 | 1146 | | 0.9 | 598 | 180 | 891 | 1369 | 504 | 1047 | 1632 | 687 | 1115 | 1520 | 600 | 1086 | 1369 | 504 | 1047 | 1923 | 963 | 1199 | 1853 | 878 | 1172 | 1853 | 878 | 1172 | | 1.0 | 539 | 187 | 930 | 1334 | 516 | 1077 | 1606 | 700 | 1138 | 1492 | 611 | 1110 | 1334 | 516 | 1077 | 1883 | 951 | 1210 | 1829 | 893 | 1195 | 1829 | 893 | 1195 | ## ZGD036S5E DIRECT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for wet coil and options/accessory air resistance data. #### **DOWNFLOW** | External
Static | Т | ap 1: Pin | 1 | Т | ap 2: Pin | 2 | Т | ap 3: Pin | 3 | Т | ap 4: Pin | 4 | Т | ap 5: Pin | 5 | |--------------------|------|-----------|-----|------|-----------|-----|------|-----------|------|------|-----------|------|------|-----------|------| | Press.
in. w.g. | CFM | Watts | RPM | | 0 | 1086 | 130 | 601 | 1127 | 142 | 623 | 1182 | 157 | 653 | 1474 | 294 | 803 | 1664 | 404 | 887 | | 0.1 | 1046 | 138 | 649 | 1089 | 150 | 668 | 1146 | 165 | 694 | 1445 | 304 | 835 | 1636 | 419 | 922 | | 0.2 | 1006 | 146 | 695 | 1049 | 158 | 713 | 1107 | 174 | 738 | 1414 | 314 | 871 | 1613 | 430 | 949 | | 0.3 | 962 | 154 | 745 | 1007 | 167 | 760 | 1068 | 183 | 781 | 1389 | 323 | 898 | 1579 | 445 | 987 | | 0.4 | 918 | 162 | 792 | 965 | 175 | 805 | 1029 | 192 | 823 | 1350 | 335 | 940 | 1556 | 454 | 1011 | | 0.5 | 873 | 170 | 838 | 923 | 183 | 849 | 990 | 200 | 864 | 1314 | 347 | 978 | 1522 | 466 | 1045 | | 0.6 | 829 | 178 | 882 | 881 | 191 | 891 | 951 | 208 | 905 | 1287 | 356 | 1008 | 1488 | 475 | 1076 | | 0.7 | 771 | 187 | 935 | 826 | 201 | 945 | 899 | 219 | 957 | 1251 | 367 | 1045 | 1442 | 485 | 1114 | | 0.8 | 729 | 194 | 973 | 785 | 208 | 983 | 860 | 227 | 995 | 1219 | 377 | 1078 | 1408 | 490 | 1140 | | 0.9 | 525 | 154 | 679 | 646 | 190 | 836 | 808 | 237 | 1045 | 1181 | 389 | 1117 | 1363 | 494 | 1170 | | 1.0 | 502 | 159 | 701 | 618 | 195 | 863 | 772 | 244 | 1078 | 1147 | 400 | 1152 | 1317 | 494 | 1196 | #### HORIZONTAL | External
Static | Т | ap 1: Pin | 1 | Т | ap 2: Pin | 2 | Т | ap 3: Pin | 3 | Т | ap 4: Pin | 4 | Т | ap 5: Pin | 5 | |--------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------| | Press.
in. w.g. | CFM | Watts | RPM | | 0 | 1218 | 166 | 651 | 1255 | 179 | 671 | 1305 | 195 | 698 | 1539 | 311 | 794 | 1666 | 386 | 850 | | 0.1 | 1183 | 175 | 684 | 1221 | 188 | 701 | 1272 | 205 | 723 | 1509 | 321 | 827 | 1637 | 402 | 886 | | 0.2 | 1140 | 186 | 733 | 1179 | 199 | 749 | 1232 | 216 | 769 | 1475 | 334 | 866 | 1614 | 414 | 914 | | 0.3 | 1097 | 196 | 781 | 1138 | 209 | 795 | 1192 | 227 | 814 | 1446 | 344 | 896 | 1580 | 430 | 954 | | 0.4 | 1054 | 206 | 828 | 1096 | 219 | 840 | 1152 | 237 | 857 | 1411 | 357 | 935 | 1545 | 445 | 991 | | 0.5 | 1010 | 215 | 872 | 1053 | 229 | 883 | 1111 | 247 | 898 | 1375 | 369 | 972 | 1510 | 457 | 1027 | | 0.6 | 967 | 225 | 915 | 1012 | 239 | 925 | 1071 | 257 | 938 | 1341 | 381 | 1010 | 1475 | 468 | 1060 | | 0.7 | 916 | 236 | 964 | 960 | 250 | 975 | 1018 | 270 | 989 | 1305 | 393 | 1047 | 1441 | 478 | 1090 | | 0.8 | 873 | 244 | 1003 | 918 | 259 | 1012 | 978 | 279 | 1025 | 1263 | 408 | 1090 | 1394 | 487 | 1128 | | 0.9 | 825 | 253 | 1052 | 873 | 268 | 1060 | 938 | 288 | 1070 | 1216 | 423 | 1138 | 1360 | 492 | 1153 | | 1.0 | 777 | 262 | 1087 | 826 | 277 | 1094 | 891 | 298 | 1103 | 1180 | 435 | 1173 | 1314 | 496 | 1183 | Page 19 508704-01 5/2025 ## ZGD048S5E DIRECT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section,
economizer, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for wet coil and options/accessory air resistance data. #### **DOWNFLOW** | External | Т | ap 1: Pin | 1 | Т | ap 2: Pin | 2 | Т | ap 3: Pin | 3 | Т | ap 4: Pin | 4 | Т | ap 5: Pin | 5 | |------------------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------| | Static
Press.
in. w.g. | CFM | Watts | RPM | | 0 | 1455 | 258 | 741 | 1514 | 294 | 779 | 1724 | 438 | 911 | 1884 | 579 | 998 | 2051 | 754 | 1084 | | 0.1 | 1417 | 270 | 786 | 1477 | 306 | 820 | 1699 | 450 | 940 | 1864 | 591 | 1021 | 2017 | 750 | 1100 | | 0.2 | 1379 | 282 | 828 | 1441 | 318 | 859 | 1672 | 462 | 970 | 1838 | 606 | 1050 | 1976 | 746 | 1119 | | 0.3 | 1342 | 293 | 869 | 1406 | 329 | 897 | 1636 | 478 | 1010 | 1806 | 622 | 1084 | 1935 | 743 | 1138 | | 0.4 | 1292 | 309 | 923 | 1359 | 345 | 948 | 1609 | 491 | 1040 | 1779 | 636 | 1113 | 1894 | 739 | 1156 | | 0.5 | 1254 | 320 | 963 | 1324 | 356 | 985 | 1582 | 503 | 1070 | 1755 | 647 | 1138 | 1853 | 736 | 1174 | | 0.6 | 1217 | 331 | 1001 | 1289 | 367 | 1022 | 1555 | 515 | 1099 | 1723 | 660 | 1169 | 1812 | 732 | 1192 | | 0.7 | 1180 | 342 | 1040 | 1254 | 378 | 1058 | 1528 | 527 | 1128 | 1694 | 670 | 1195 | 1757 | 728 | 1214 | | 0.8 | 1142 | 352 | 1077 | 1219 | 389 | 1093 | 1492 | 542 | 1167 | 1666 | 679 | 1219 | 1716 | 726 | 1231 | | 0.9 | 1114 | 361 | 1104 | 1190 | 399 | 1122 | 1465 | 554 | 1195 | 1634 | 686 | 1245 | 1675 | 723 | 1247 | | 1.0 | 1079 | 371 | 1139 | 1158 | 409 | 1155 | 1442 | 564 | 1219 | 1592 | 691 | 1273 | 1627 | 720 | 1265 | #### HORIZONTAL | External
Static | Т | ap 1: Pin | 1 | Т | ap 2: Pin | 2 | Т | ap 3: Pin | 3 | Т | ap 4: Pin | 4 | Т | ap 5: Pin | 5 | |--------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------| | Press.
in. w.g. | CFM | Watts | RPM | | 0 | 1453 | 259 | 761 | 1524 | 292 | 794 | 1746 | 434 | 900 | 1914 | 569 | 1030 | 2089 | 756 | 1068 | | 0.1 | 1425 | 269 | 795 | 1497 | 302 | 825 | 1724 | 445 | 927 | 1893 | 582 | 1007 | 2066 | 754 | 1081 | | 0.2 | 1391 | 281 | 835 | 1465 | 314 | 863 | 1697 | 458 | 960 | 1865 | 600 | 996 | 2021 | 750 | 1102 | | 0.3 | 1358 | 292 | 874 | 1433 | 326 | 901 | 1669 | 472 | 993 | 1841 | 614 | 989 | 1976 | 746 | 1123 | | 0.4 | 1325 | 303 | 913 | 1402 | 337 | 938 | 1642 | 485 | 1025 | 1812 | 629 | 997 | 1946 | 744 | 1144 | | 0.5 | 1292 | 314 | 951 | 1370 | 349 | 974 | 1606 | 502 | 1068 | 1784 | 643 | 1014 | 1887 | 739 | 1165 | | 0.6 | 1258 | 325 | 989 | 1338 | 360 | 1011 | 1579 | 515 | 1099 | 1755 | 655 | 1041 | 1857 | 737 | 1194 | | 0.7 | 1214 | 340 | 1038 | 1295 | 376 | 1059 | 1552 | 528 | 1130 | 1722 | 668 | 1089 | 1797 | 733 | 1215 | | 0.8 | 1181 | 350 | 1075 | 1263 | 387 | 1095 | 1515 | 545 | 1171 | 1694 | 678 | 1138 | 1752 | 730 | 1236 | | 0.9 | 1148 | 361 | 1110 | 1232 | 398 | 1130 | 1488 | 558 | 1202 | 1652 | 684 | 1204 | 1692 | 726 | 1264 | | 1.0 | 1112 | 372 | 1148 | 1200 | 410 | 1165 | 1466 | 568 | 1227 | 1619 | 689 | 1283 | 1632 | 723 | 1288 | ## ZGD060S5E DIRECT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for wet coil and options/accessory air resistance data. #### **DOWNFLOW** | External | Т | ap 1: Pin | 1 | Т | ap 2: Pin | 2 | Т | ap 3: Pin | 3 | Т | ap 4: Pin | 4 | Т | ap 5: Pin | 5 | |------------------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------| | Static
Press.
in. w.g. | CFM | Watts | RPM | | 0 | 1795 | 438 | 714 | 1846 | 469 | 781 | 1938 | 553 | 860 | 2108 | 746 | 964 | 2263 | 916 | 1027 | | 0.1 | 1765 | 450 | 765 | 1818 | 481 | 816 | 1910 | 566 | 884 | 2082 | 760 | 987 | 2230 | 928 | 1048 | | 0.2 | 1732 | 463 | 818 | 1785 | 495 | 855 | 1879 | 581 | 912 | 2054 | 776 | 1012 | 2190 | 942 | 1073 | | 0.3 | 1689 | 480 | 874 | 1742 | 513 | 900 | 1837 | 601 | 949 | 2018 | 797 | 1045 | 2150 | 952 | 1096 | | 0.4 | 1664 | 490 | 911 | 1719 | 523 | 926 | 1815 | 612 | 970 | 1990 | 812 | 1069 | 2110 | 960 | 1118 | | 0.5 | 1622 | 507 | 957 | 1676 | 541 | 967 | 1775 | 630 | 1004 | 1962 | 828 | 1093 | 2070 | 966 | 1139 | | 0.6 | 1588 | 521 | 991 | 1643 | 555 | 998 | 1743 | 644 | 1031 | 1934 | 843 | 1117 | 2030 | 969 | 1158 | | 0.7 | 1551 | 535 | 1022 | 1609 | 569 | 1027 | 1712 | 658 | 1058 | 1906 | 858 | 1140 | 1990 | 969 | 1176 | | 0.8 | 1509 | 552 | 1052 | 1565 | 587 | 1061 | 1670 | 677 | 1093 | 1870 | 877 | 1171 | 1950 | 968 | 1192 | | 0.9 | 1476 | 565 | 1071 | 1533 | 601 | 1085 | 1639 | 691 | 1120 | 1842 | 892 | 1194 | 1897 | 961 | 1212 | | 1.0 | 1444 | 577 | 1080 | 1503 | 612 | 1102 | 1612 | 703 | 1141 | 1819 | 904 | 1213 | 1857 | 953 | 1225 | #### HORIZONTAL | External
Static | Т | ap 1: Pin | 1 | Т | ap 2: Pin | 2 | Т | ap 3: Pin | 3 | Т | ap 4: Pin | 4 | Т | ap 5: Pin | 5 | |--------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------| | Press.
in. w.g. | CFM | Watts | RPM | | 0 | 1776 | 440 | 799 | 1825 | 472 | 820 | 1926 | 555 | 862 | 2131 | 739 | 945 | 2244 | 870 | 992 | | 0.1 | 1746 | 452 | 826 | 1796 | 484 | 846 | 1897 | 568 | 887 | 2097 | 753 | 970 | 2224 | 885 | 1012 | | 0.2 | 1713 | 465 | 855 | 1764 | 498 | 874 | 1866 | 581 | 913 | 2068 | 765 | 992 | 2189 | 909 | 1043 | | 0.3 | 1669 | 482 | 893 | 1722 | 516 | 912 | 1827 | 598 | 947 | 2038 | 778 | 1015 | 2166 | 922 | 1062 | | 0.4 | 1644 | 492 | 915 | 1699 | 525 | 931 | 1802 | 609 | 968 | 2000 | 797 | 1046 | 2131 | 940 | 1089 | | 0.5 | 1603 | 509 | 951 | 1658 | 542 | 967 | 1763 | 627 | 1001 | 1970 | 812 | 1070 | 2097 | 953 | 1114 | | 0.6 | 1570 | 522 | 979 | 1626 | 556 | 995 | 1733 | 641 | 1028 | 1941 | 827 | 1095 | 2062 | 963 | 1136 | | 0.7 | 1537 | 535 | 1008 | 1593 | 569 | 1023 | 1701 | 655 | 1055 | 1912 | 844 | 1120 | 2027 | 968 | 1156 | | 0.8 | 1494 | 552 | 1046 | 1551 | 587 | 1060 | 1663 | 673 | 1088 | 1882 | 860 | 1146 | 1981 | 970 | 1178 | | 0.9 | 1463 | 564 | 1072 | 1520 | 600 | 1086 | 1632 | 687 | 1115 | 1853 | 878 | 1172 | 1923 | 963 | 1199 | | 1.0 | 1433 | 576 | 1098 | 1492 | 611 | 1110 | 1606 | 700 | 1138 | 1829 | 893 | 1195 | 1883 | 951 | 1210 | Page 21 508704-01 5/2025 ## ZGD036S5B BELT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, wet coil, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for blower motors and drives and wet coil and options/accessory air resistance data. | — page | , 21 101 1 | | | ina anve | JS and w | /Ct Oon t | ина ори | | | | arioc ac | | | | | | |--------|------------|------|------|----------|----------|-----------|---------|----------|------------|------|----------|------|------|------|------|------| | DOWNF | LOW | | | | | | | | | | | | | | | | | Air | | | | | | | Exte | rnal Sta | atic - in. | w.g. | | | | | | | | Volume | 0. | 10 | 0. | 20 | 0. | 30 | 0. | 40 | 0. | 50 | 0. | 60 | 0. | 70 | 0. | 80 | | cfm | RPM | ВНР | RPM | ВНР | RPM | ВНР | RPM | ВНР | RPM | BHP | RPM | ВНР | RPM | ВНР | RPM | ВНР | | 900 | 573 | 0.16 | 639 | 0.18 | 707 | 0.19 | 776 | 0.21 | 844 | 0.23 | 908 | 0.25 | 967 | 0.27 | 1022 | 0.30 | | 1000 | 600 | 0.18 | 665 | 0.20 | 733 | 0.22 | 802 | 0.23 | 868 | 0.25 | 930 | 0.28 | 986 | 0.31 | 1038 | 0.33 | | 1100 | 628 | 0.21 | 695 | 0.22 | 762 | 0.24 | 829 | 0.26 | 893 | 0.29 | 953 | 0.31 | 1007 | 0.35 | 1057 | 0.38 | | 1200 | 660 | 0.23 | 727 | 0.25 | 794 | 0.27 | 859 | 0.29 | 921 | 0.32 | 977 | 0.36 | 1029 | 0.39 | 1077 | 0.42 | | 1300 | 695 | 0.26 | 761 | 0.28 | 827 | 0.31 | 890 | 0.33 | 949 | 0.37 | 1003 | 0.40 | 1053 | 0.44 | 1099 | 0.47 | | 1400 | 734 | 0.30 | 799 | 0.32 | 862 | 0.35 | 923 | 0.38 | 978 | 0.41 | 1030 | 0.45 | 1078 | 0.49 | 1122 | 0.53 | | 1500 | 775 | 0.34 | 837 | 0.37 | 898 | 0.40 | 955 | 0.43 | 1009 | 0.46 | 1058 | 0.50 | 1104 | 0.54 | 1147 | 0.58 | | Air | | | | | | | Exte | rnal Sta | atic - in. | w.g. | | | | | | | | Volume | 0. | 90 | 1. | 00 | 1. | 10 | 1. | 20 | 1.3 | 30 | 1. | 40 | 1. | 50 | 1. | 60 | | cfm | RPM | ВНР | 900 | 1072 | 0.32 | 1120 | 0.35 | 1166 | 0.38 | 1210 | 0.41 | 1252 | 0.44 | 1292 | 0.47 | 1331 | 0.5 | 1370 | 0.54 | | 1000 | 1087 | 0.36 | 1134 | 0.39 | 1179 | 0.42 | 1222 | 0.45 | 1263 | 0.48 | 1303 | 0.51 | 1341 | 0.55 | 1379 | 0.58 | | 1100 | 1104 | 0.40 | 1150 | 0.43 | 1194 | 0.46 | 1236 | 0.49 | 1277 | 0.53 | 1315 | 0.56 | 1353 | 0.60 | 1390 | 0.64 | | 1200 | 1123 | 0.45 | 1167 | 0.48 | 1210 | 0.51 | 1251 | 0.55 | 1291 | 0.58 | 1330 | 0.62 | 1367 | 0.66 | 1403 | 0.70 | | 1300 | 1143 | 0.50 | 1186 | 0.54 | 1228 | 0.57 | 1268 | 0.60 | 1308 | 0.64 | 1346 | 0.68 | 1382 | 0.72 | 1418 | 0.76 | | 1400 | 1165 | 0.56 | 1206 | 0.59 | 1247 | 0.63 | 1287 | 0.67 | 1326 | 0.70 | 1363 | 0.75 | 1399 | 0.79 | 1435 | 0.83 | | 1500 | 1188 | 0.62 | 1229 | 0.66 | 1269 | 0.69 | 1308 | 0.73 | 1346 | 0.77 | 1382 | 0.82 | 1418 | 0.86 | 1453 | 0.90 | | HORIZO | NTAL | | | | | | | | | | | | | | | | | Air | | | | | | | Exte | rnal Sta | atic - in. | w.g. | | | | | | | | Volume | 0. | 10 | 0. | 20 | 0. | 30 | 0. | 40 | 0. | 50 | 0. | 60 | 0. | 70 | 0. | 80 | | cfm | RPM | ВНР | 900 | 573 | 0.14 | 642 | 0.16 | 712 | 0.18 | 780 | 0.21 | 846 | 0.23 | 909 | 0.26 | 967 | 0.28 | 1022 | 0.31 | | 1000 | 599 | 0.16 | 668 | 0.18 | 737 | 0.21 | 804 | 0.23 | 868 | 0.26 | 928 | 0.29 | 984 | 0.32 | 1037 | 0.35 | | 1100 | 626 | 0.18 | 695 | 0.21 | 764 | 0.24 | 830 | 0.26 | 892 | 0.29 | 950 |
0.32 | 1003 | 0.36 | 1053 | 0.39 | | 1200 | 656 | 0.21 | 726 | 0.24 | 794 | 0.27 | 858 | 0.30 | 918 | 0.33 | 973 | 0.37 | 1024 | 0.40 | 1072 | 0.43 | | 1300 | 691 | 0.25 | 761 | 0.28 | 827 | 0.31 | 889 | 0.34 | 945 | 0.38 | 998 | 0.41 | 1047 | 0.45 | 1093 | 0.48 | | 1400 | 731 | 0.29 | 798 | 0.32 | 862 | 0.35 | 920 | 0.39 | 974 | 0.42 | 1024 | 0.46 | 1071 | 0.49 | 1115 | 0.53 | | 1500 | 773 | 0.34 | 838 | 0.37 | 898 | 0.40 | 952 | 0.44 | 1004 | 0.47 | 1051 | 0.51 | 1096 | 0.55 | 1139 | 0.58 | | Air | | • | • | • | ' | • | Exte | rnal Sta | atic - in. | w.g. | | | | | • | | | Volume | 0. | 90 | 1. | 00 | 1. | 10 | 1. | 20 | 1.3 | 30 | 1. | 40 | 1. | 50 | 1. | 60 | | cfm | RPM | ВНР | 900 | 1074 | 0.33 | 1123 | 0.36 | 1171 | 0.39 | 1216 | 0.41 | 1260 | 0.44 | 1301 | 0.47 | 1340 | 0.49 | 1378 | 0.52 | | 1000 | 1087 | 0.37 | 1135 | 0.40 | 1181 | 0.42 | 1226 | 0.45 | 1269 | 0.48 | 1310 | 0.51 | 1350 | 0.54 | 1388 | 0.57 | | 1100 | 1101 | 0.41 | 1148 | 0.44 | 1193 | 0.47 | 1237 | 0.49 | 1279 | 0.52 | 1321 | 0.55 | 1360 | 0.59 | 1398 | 0.62 | | 1200 | 1118 | 0.46 | 1163 | 0.48 | 1208 | 0.51 | 1251 | 0.54 | 1293 | 0.58 | 1334 | 0.61 | 1375 | 0.64 | 1414 | 0.68 | | 1300 | 1137 | 0.51 | 1181 | 0.53 | 1224 | 0.57 | 1267 | 0.60 | 1309 | 0.63 | 1350 | 0.67 | 1391 | 0.71 | 1432 | 0.75 | | 1400 | 1158 | 0.56 | 1200 | 0.59 | 1242 | 0.62 | 1284 | 0.66 | 1326 | 0.70 | 1367 | 0.74 | 1407 | 0.79 | 1448 | 0.83 | | 1500 | 1180 | 0.61 | 1222 | 0.65 | 1263 | 0.69 | 1304 | 0.73 | 1345 | 0.77 | 1386 | 0.82 | 1427 | 0.87 | 1467 | 0.92 | ## ZGD048S5B BELT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, wet coil, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for blower motors and drives and wet coil and options/accessory air resistance data. | DOWNFL | .OW | | | | | | | | | | | | | | | | |--|---|---|---|---|---|---|--|---|--|---|--|---|--|---|--|---| | Air | | | | | | | Exte | rnal Sta | atic - in. | w.g. | | | | | | | | Volume | 0. | 10 | 0. | 20 | 0. | 30 | 0. | 40 | 0. | 50 | 0.0 | 60 | 0. | 70 | 0.8 | 80 | | cfm | RPM | ВНР | RPM | ВНР | RPM | ВНР | RPM | BHP | RPM | BHP | RPM | ВНР | RPM | BHP | RPM | BHP | | 1200 | 660 | 0.23 | 727 | 0.25 | 794 | 0.27 | 859 | 0.29 | 921 | 0.32 | 977 | 0.36 | 1029 | 0.39 | 1077 | 0.42 | | 1300 | 695 | 0.26 | 761 | 0.28 | 827 | 0.31 | 890 | 0.33 | 949 | 0.37 | 1003 | 0.40 | 1053 | 0.44 | 1099 | 0.47 | | 1400 | 734 | 0.30 | 799 | 0.32 | 862 | 0.35 | 923 | 0.38 | 978 | 0.41 | 1030 | 0.45 | 1078 | 0.49 | 1122 | 0.53 | | 1500 | 775 | 0.34 | 837 | 0.37 | 898 | 0.40 | 955 | 0.43 | 1009 | 0.46 | 1058 | 0.50 | 1104 | 0.54 | 1147 | 0.58 | | 1600 | 817 | 0.39 | 877 | 0.42 | 935 | 0.45 | 989 | 0.48 | 1040 | 0.52 | 1087 | 0.56 | 1131 | 0.60 | 1173 | 0.65 | | 1700 | 859 | 0.44 | 917 | 0.47 | 972 | 0.50 | 1023 | 0.54 | 1071 | 0.58 | 1117 | 0.62 | 1159 | 0.67 | 1199 | 0.71 | | 1800 | 902 | 0.49 | 957 | 0.53 | 1008 | 0.56 | 1057 | 0.60 | 1103 | 0.64 | 1147 | 0.69 | 1188 | 0.74 | 1227 | 0.79 | | 1900 | 944 | 0.56 | 996 | 0.59 | 1045 | 0.63 | 1092 | 0.68 | 1136 | 0.72 | 1178 | 0.77 | 1218 | 0.82 | 1257 | 0.87 | | 2000 | 986 | 0.63 | 1035 | 0.67 | 1083 | 0.71 | 1127 | 0.76 | 1170 | 0.81 | 1210 | 0.86 | 1249 | 0.91 | 1287 | 0.97 | | Air | | | | | | | | | tic - in. | | | | | | | | | Volume | | 90 | | 00 | | 10 | 1.: | | 1.3 | | | 40 | | 50 | 1.0 | | | cfm | RPM | ВНР | RPM | BHP | RPM | BHP | RPM | ВНР | RPM | ВНР | RPM | ВНР | RPM | BHP | RPM | ВНР | | 1200 | 1123 | 0.45 | 1167 | 0.48 | 1210 | 0.51 | 1251 | 0.55 | 1291 | 0.58 | 1330 | 0.62 | 1367 | 0.66 | 1403 | 0.70 | | 1300 | 1143 | 0.50 | 1186 | 0.54 | 1228 | 0.57 | 1268 | 0.60 | 1308 | 0.64 | 1346 | 0.68 | 1382 | 0.72 | 1418 | 0.76 | | 1400 | 1165 | 0.56 | 1206 | 0.59 | 1247 | 0.63 | 1287 | 0.67 | 1326 | 0.70 | 1363 | 0.75 | 1399 | 0.79 | 1435 | 0.83 | | 1500 | 1188 | 0.62 | 1229 | 0.66 | 1269 | 0.69 | 1308 | 0.73 | 1346 | 0.77 | 1382 | 0.82 | 1418 | 0.86 | 1453 | 0.90 | | 1600 | 1213 | 0.69 | 1252 | 0.73 | 1292 | 0.77 | 1330 | 0.81 | 1367 | 0.85 | 1403 | 0.89 | 1438 | 0.94 | 1472 | 0.98 | | 1700 | 1239 | 0.76 | 1278 | 0.80 | 1316 | 0.84 | 1354 | 0.89 | 1390 | 0.93 | 1425 | 0.98 | 1459 | 1.02 | 1492 | 1.07 | | 1800 | 1266 | 0.83 | 1304 | 0.88 | 1342 | 0.93 | 1378 | 0.98 | 1414 | 1.02 | 1448 | 1.07 | 1481 | 1.12 | 1514 | 1.16 | | 1900 | 1294 | 0.92 | 1332 | 0.97 | 1369 | 1.02 | 1404 | 1.07 | 1439 | 1.12 | 1472 | 1.17 | 1504 | 1.21 | 1536 | 1.26 | | 2000 | 1324 | 1.02 | 1360 | 1.07 | 1396 | 1.13 | 1431 | 1.18 | 1465 | 1.23 | 1497 | 1.27 | 1529 | 1.32 | 1560 | 1.37 | | HORIZON | NTAL | | | | | | | | | | | | | | | | | Air | | | | | | | | | tic - in. | | | | | | | | | Volume | 0. | 10 | 0. | 20 | 0. | 3በ | l 0. | 40 | | EU | 0.0 | | | | | | | | | | | | | | | 40 | 0. | | | 60 | | 70 | | 80 | | cfm | RPM | ВНР | 1200 | RPM 656 | BHP 0.21 | RPM 726 | BHP 0.24 | RPM 794 | BHP 0.27 | RPM 858 | BHP 0.30 | RPM 918 | BHP 0.33 | RPM 973 | BHP 0.37 | RPM 1024 | BHP 0.40 | RPM 1072 | BHP 0.43 | | 1200
1300 | RPM 656 691 | BHP 0.21 0.25 | RPM
726
761 | 0.24
0.28 | RPM
794
827 | 0.27
0.31 | RPM
858
889 | BHP 0.30 0.34 | RPM
918
945 | BHP 0.33 0.38 | RPM
973
998 | BHP 0.37 0.41 | RPM
1024
1047 | 0.40
0.45 | RPM
1072
1093 | 0.43
0.48 | | 1200
1300
1400 | RPM 656 691 731 | 0.21
0.25
0.29 | RPM 726 761 798 | 0.24
0.28
0.32 | RPM 794 827 862 | 0.27
0.31
0.35 | RPM 858 889 920 | 0.30
0.34
0.39 | 918
945
974 | 0.33
0.38
0.42 | 973
998
1024 | 0.37
0.41
0.46 | RPM
1024
1047
1071 | 0.40
0.45
0.49 | RPM
1072
1093
1115 | 0.43
0.48
0.53 | | 1200
1300
1400
1500 | RPM
656
691
731
773 | 0.21
0.25
0.29
0.34 | RPM 726 761 798 838 | 0.24
0.28
0.32
0.37 | RPM 794 827 862 898 | 0.27
0.31
0.35
0.40 | 858
889
920
952 | 0.30
0.34
0.39
0.44 | 918
945
974
1004 | 0.33
0.38
0.42
0.47 | 973
998
1024
1051 | 0.37
0.41
0.46
0.51 | RPM
1024
1047
1071
1096 | 0.40
0.45
0.49
0.55 | RPM
1072
1093
1115
1139 | 0.43
0.48
0.53
0.58 | | 1200
1300
1400
1500
1600 | RPM
656
691
731
773
817 | 0.21
0.25
0.29
0.34
0.39 | 726
761
798
838
878 | 0.24
0.28
0.32
0.37
0.42 | RPM 794 827 862 898 934 | 0.27
0.31
0.35
0.40
0.46 | 858
889
920
952
985 | 0.30
0.34
0.39
0.44
0.49 | 918
945
974
1004
1034 | 0.33
0.38
0.42
0.47
0.53 | 973
998
1024
1051
1080 | 0.37
0.41
0.46
0.51
0.56 | RPM
1024
1047
1071
1096
1123 | 0.40
0.45
0.49
0.55
0.60 | RPM
1072
1093
1115
1139
1164 | 0.43
0.48
0.53
0.58
0.64 | | 1200
1300
1400
1500
1600
1700 | RPM
656
691
731
773
817
861 | 0.21
0.25
0.29
0.34
0.39
0.45 | RPM 726 761 798 838 878 918 | 0.24
0.28
0.32
0.37
0.42
0.48 | RPM
794
827
862
898
934
970 | 0.27
0.31
0.35
0.40
0.46
0.51 | 858
889
920
952
985
1018 | 0.30
0.34
0.39
0.44
0.49
0.55 | 918
945
974
1004
1034
1065 | 0.33
0.38
0.42
0.47
0.53 | 973
998
1024
1051
1080
1108 | 0.37
0.41
0.46
0.51
0.56
0.62 | RPM
1024
1047
1071
1096
1123
1150 | 0.40
0.45
0.49
0.55
0.60
0.66 | RPM
1072
1093
1115
1139
1164
1190 |
0.43
0.48
0.53
0.58
0.64
0.70 | | 1200
1300
1400
1500
1600
1700
1800 | RPM
656
691
731
773
817
861
904 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51 | RPM 726 761 798 838 878 918 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54 | RPM
794
827
862
898
934
970
1006 | 0.27
0.31
0.35
0.40
0.46
0.51 | 858
889
920
952
985
1018
1052 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61 | 918
945
974
1004
1034
1065
1096 | 0.33
0.38
0.42
0.47
0.53
0.58 | 973
998
1024
1051
1080
1108
1138 | 0.37
0.41
0.46
0.51
0.56
0.62 | RPM
1024
1047
1071
1096
1123
1150
1178 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73 | RPM
1072
1093
1115
1139
1164
1190
1217 | 0.43
0.48
0.53
0.58
0.64
0.70 | | 1200
1300
1400
1500
1600
1700
1800
1900 | RPM
656
691
731
773
817
861
904 | BHP
0.21
0.25
0.29
0.34
0.39
0.45
0.51 | RPM 726 761 798 838 878 918 957 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61 | RPM 794 827 862 898 934 970 1006 1042 | BHP
0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64 | RPM
858
889
920
952
985
1018
1052
1086 | BHP
0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68 | 918
945
974
1004
1034
1065
1096
1128 | BHP
0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72 | PPM
973
998
1024
1051
1080
1108
1138
1168 | BHP
0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76 | RPM
1024
1047
1071
1096
1123
1150
1178
1207 | BHP
0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81 | RPM
1072
1093
1115
1139
1164
1190
1217
1245 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78 | | 1200
1300
1400
1500
1600
1700
1800
1900
2000 | RPM
656
691
731
773
817
861
904 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51 | RPM 726 761 798 838 878 918 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54 | RPM
794
827
862
898
934
970
1006 | 0.27
0.31
0.35
0.40
0.46
0.51 | 858
889
920
952
985
1018
1052
1086
1120 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68 | 918
945
974
1004
1034
1065
1096
1128 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72 | 973
998
1024
1051
1080
1108
1138 | 0.37
0.41
0.46
0.51
0.56
0.62 | RPM
1024
1047
1071
1096
1123
1150
1178 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73 | RPM
1072
1093
1115
1139
1164
1190
1217 | 0.43
0.48
0.53
0.58
0.64
0.70 | | 1200
1300
1400
1500
1600
1700
1800
1900
2000
Air | RPM
656
691
731
773
817
861
904
946
988 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57 | 726
761
798
838
878
918
957
996
1035 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61 | RPM 794 827 862 898 934 970 1006 1042 1079 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72 | 858
889
920
952
985
1018
1052
1086
1120
Exte | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76 | 918
945
974
1004
1034
1065
1096
1128
1161
atic - in. | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g. | 973
998
1024
1051
1080
1108
1138
1168
1199 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85 | RPM
1024
1047
1071
1096
1123
1150
1178
1207
1237 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90 | RPM
1072
1093
1115
1139
1164
1190
1217
1245
1275 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96 | | 1200
1300
1400
1500
1600
1700
1800
1900
2000
Air
Volume | RPM 656 691 731 773 817 861 904 946 988 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57 | 726
761
798
838
878
918
957
996
1035 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68 | RPM 794 827 862 898 934 970 1006 1042 1079 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72 | 858
889
920
952
985
1018
1052
1086
1120
Exte | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta | 918
945
974
1004
1034
1065
1096
1128
1161
atic - in. | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g. | 973
998
1024
1051
1080
1108
1138
1168
1199 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 | BHP 0.43 0.48 0.53 0.58 0.64 0.70 0.78 0.86 0.96 | | 1200
1300
1400
1500
1600
1700
1800
1900
2000
Air
Volume
cfm | RPM 656 691 731 773 817 861 904 946 988 0.: RPM | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57
0.64 | RPM 726 761 798 838 878 918 957 996 1035 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68 | RPM 794 827 862 898 934 970 1006 1042 1079 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1. | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta | 918
945
974
1004
1034
1065
1096
1128
1161
atic - in.
RPM | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30 | 973
998
1024
1051
1080
1108
1138
1168
1199 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
BHP | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96 | | 1200 1300 1400 1500 1600 1700 1800 1900 2000 Air Volume cfm | RPM 656 691 731 773 817 861 904 946 988 0.8 RPM 1118 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57
0.64 | 726
761
798
838
878
918
957
996
1035
1.
RPM | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta | 918
945
974
1004
1034
1065
1096
1128
1161
atic - in.
RPM
1293 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP | 973
998
1024
1051
1080
1108
1138
1168
1199
1 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.: RPM 1375 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1 RPM 1414 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96
BHP
0.68 | | 1200 1300 1400 1500 1600 1700 1800 1900 2000 Air Volume cfm 1200 1300 | RPM 656 691 731 773 817 861 904 946 988 0.: RPM 1118 1137 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.64
90
BHP
0.46
0.51 | 726
761
798
838
878
918
957
996
1035
1.
RPM | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.57 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta
20
BHP
0.54
0.60 | 918 945 974 1004 1034 1065 1096 1128 1161 atic - in. RPM 1293 1309 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63 | 973
998
1024
1051
1080
1108
1138
1168
1199 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1.IRPM 1414 1432 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96
BHP
0.68
0.75 | | 1200 1300 1400 1500 1600 1700 1800 1900 2000 Air Volume cfm 1200 1300 1400 | RPM 656 691 731 773 817 861 904 946 988 0.9 RPM 1118 1137 1158 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.64
90
BHP
0.46
0.51
0.56 | 726
761
798
838
878
918
957
996
1035
1.
RPM
1163
1181
1200 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53
0.59 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 1242 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.57
0.62 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267
1284 |
0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta
20
BHP
0.54
0.60
0.66 | 918 945 974 1004 1034 1065 1096 1128 1161 atic - in. RPM 1293 1309 1326 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63
0.70 | 973
998
1024
1051
1080
1108
1138
1168
1199
1
RPM
1334
1350
1367 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67
0.74 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.: RPM 1375 1391 1407 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71
0.79 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 RPM 1414 1432 1448 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96
BHP
0.68
0.75
0.83 | | 1200 1300 1400 1500 1600 1700 1800 1900 2000 Air Volume cfm 1200 1300 1400 1500 | RPM 656 691 731 773 817 861 904 946 988 0.: RPM 1118 1137 1158 1180 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57
0.64
90
BHP
0.46
0.51
0.56
0.61 | 726
761
798
838
878
918
957
996
1035
1.
RPM
1163
1181
1200 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53
0.59
0.65 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 1242 1263 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.62
0.69 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267
1284
1304 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta
20
BHP
0.54
0.60
0.66
0.73 | 918 945 974 1004 1034 1065 1096 1128 1161 atic - in. RPM 1293 1309 1326 1345 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63
0.70 | 973 998 1024 1051 1080 1108 1138 1168 1199 1.4 RPM 1334 1350 1367 1386 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67
0.74
0.82 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.: RPM 1375 1391 1407 1427 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71
0.79
0.87 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1 RPM 1414 1432 1448 1467 | BHP 0.43 0.48 0.53 0.58 0.64 0.70 0.78 0.86 0.96 BHP 0.68 0.75 0.83 0.92 | | 1200 1300 1400 1500 1600 1700 1800 1900 2000 Air Volume cfm 1200 1300 1400 1500 1600 | RPM 656 691 731 773 817 861 904 946 988 0.: RPM 1118 1137 1158 1180 1204 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.64
90
BHP
0.46
0.51
0.56
0.61 | 726
761
798
838
878
918
957
996
1035
1.
RPM
1163
1181
1200
1222
1245 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53
0.59
0.65 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 1263 1285 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.57
0.62
0.69
0.76 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267
1284
1304
1325 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta
20
BHP
0.54
0.60
0.66
0.73 | 918 945 974 1004 1034 1065 1096 1128 1161 1.: RPM 1293 1309 1326 1345 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63
0.70
0.77 | 973 998 1024 1051 1080 1108 1138 1168 1199 1.4 RPM 1334 1350 1367 1386 1406 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67
0.74
0.82
0.90 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.: RPM 1375 1391 1407 1427 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71
0.79
0.87
0.96 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 RPM 1414 1432 1448 1467 1487 | BHP 0.43 0.48 0.53 0.58 0.64 0.70 0.78 0.86 0.96 BHP 0.68 0.75 0.83 0.92 1.02 | | 1200 1300 1400 1500 1600 1700 1800 2000 Air Volume cfm 1200 1300 1400 1500 1600 1700 | RPM 656 691 731 773 817 861 904 946 988 0.: RPM 1118 1137 1158 1180 1204 1229 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57
0.64
90
BHP
0.46
0.51
0.56
0.61
0.68
0.75 | 726 761 798 838 878 918 957 996 1035 1. RPM 1163 1181 1200 1222 1245 1269 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53
0.59
0.65
0.72 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 1242 1263 1285 1309 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.57
0.62
0.69
0.76
0.84 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267
1284
1304
1325
1348 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta
20
BHP
0.54
0.60
0.66
0.73
0.80
0.89 | 918 945 974 1004 1034 1065 1096 1128 1161 atic - in. RPM 1293 1309 1326 1345 1366 1388 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63
0.70
0.77 | 973 998 1024 1051 1080 1108 1138 1168 1199 1.4 RPM 1334 1350 1367 1386 1406 1428 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67
0.74
0.82
0.90
1.00 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.: RPM 1375 1391 1407 1427 1447 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71
0.79
0.87
0.96
1.06 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1.414 1432 1448 1467 1487 1508 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96
BHP
0.68
0.75
0.83
0.92
1.02
1.12 | | 1200 1300 1400 1500 1600 1700 1800 2000 Air Volume cfm 1200 1300 1400 1500 1600 1700 1800 | RPM 656 691 731 773 817 861 904 946 988 0.8 RPM 1118 1137 1158 1180 1204 1229 1256 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57
0.64
90
BHP
0.46
0.51
0.56
0.61
0.68
0.75 | 726 761 798 838 878 918 957 996 1035 1. RPM 1163 1181 1200 1222 1245 1269 1295 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53
0.59
0.65
0.72
0.79 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 1242 1263 1285 1309 1334 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.57
0.62
0.69
0.76
0.84
0.93 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267
1284
1304
1325
1348
1373 | BHP 0.30 0.34 0.39 0.44 0.49 0.55 0.61 0.68 0.76 rnal Sta 20 BHP 0.54 0.60 0.66 0.73 0.80 0.89 0.98 | 918 945 974 1004 1034 1065 1096 1128 1161 atic - in. RPM 1293 1309 1326 1345 1366 1388 1412 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63
0.70
0.77
0.85
0.94
1.04 | 973 998 1024 1051 1080 1108 1138 1168 1199 1.4 RPM 1334 1350 1367 1386 1406 1428 1451 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67
0.74
0.82
0.90
1.00
1.10 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.8 RPM 1375 1391 1407 1427 1447 1468 1490 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71
0.79
0.87
0.96
1.06
1.16 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1.1 RPM 1414 1432 1448 1467 1487 1508 1529 | BHP 0.43 0.48 0.53 0.58 0.64 0.70 0.78 0.86 0.96 BHP 0.68 0.75 0.83 0.92 1.02 1.12 1.23 | | 1200 1300 1400 1500 1600 1700 1800 2000 Air Volume cfm 1200 1300 1400 1500 1600 1700 | RPM 656 691 731 773 817 861 904 946 988 0.: RPM 1118 1137 1158 1180 1204 1229 | 0.21
0.25
0.29
0.34
0.39
0.45
0.51
0.57
0.64
90
BHP
0.46
0.51
0.56
0.61
0.68
0.75 | 726 761 798 838 878 918 957 996 1035 1. RPM 1163 1181 1200 1222 1245 1269 | 0.24
0.28
0.32
0.37
0.42
0.48
0.54
0.61
0.68
00
BHP
0.48
0.53
0.59
0.65
0.72 | RPM 794 827 862 898 934 970 1006 1042 1079 1. RPM 1208 1224 1242 1263 1285 1309 | 0.27
0.31
0.35
0.40
0.46
0.51
0.57
0.64
0.72
10
BHP
0.51
0.57
0.62
0.69
0.76
0.84 | 858
889
920
952
985
1018
1052
1086
1120
Exte
1.
RPM
1251
1267
1284
1304
1325
1348 | 0.30
0.34
0.39
0.44
0.49
0.55
0.61
0.68
0.76
rnal Sta
20
BHP
0.54
0.60
0.66
0.73
0.80
0.89 | 918 945 974 1004 1034 1065 1096 1128 1161 atic - in. RPM 1293 1309 1326 1345 1366 1388 | 0.33
0.38
0.42
0.47
0.53
0.58
0.65
0.72
0.81
w.g.
30
BHP
0.58
0.63
0.70
0.77 | 973 998 1024 1051 1080 1108 1138 1168 1199 1.4 RPM 1334 1350 1367 1386 1406 1428 | 0.37
0.41
0.46
0.51
0.56
0.62
0.69
0.76
0.85
40
BHP
0.61
0.67
0.74
0.82
0.90
1.00 | RPM 1024 1047 1071 1096 1123 1150 1178 1207 1237 1.: RPM 1375 1391 1407 1427 1447 | 0.40
0.45
0.49
0.55
0.60
0.66
0.73
0.81
0.90
50
BHP
0.64
0.71
0.79
0.87
0.96
1.06 | RPM 1072 1093 1115 1139 1164 1190 1217 1245 1275 1.414 1432 1448 1467 1487 1508 | 0.43
0.48
0.53
0.58
0.64
0.70
0.78
0.86
0.96
BHP
0.68
0.75
0.83
0.92
1.02
1.12 | Page 23 508704-01 5/2025 ## ZGD060S5B BELT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE
FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: - 1 Any factory installed options air resistance (heat section, economizer, wet coil, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for blower motors and drives and wet coil and options/accessory air resistance data. | DOWNFL | _OW | | | | | | | | | | | | | | | | |--|--|--|---|---|--|---|--|--|---|--|--|---|--|---|--|---| | Air | | | | | | | Exte | rnal Sta | atic - in. | w.g. | | | | | | | | Volume | 0. | 10 | 0.: | 20 | 0. | 30 | 0.4 | 40 | 0. | 50 | 0.0 | 60 | 0. | 70 | 0.8 | 80 | | cfm | RPM | BHP | RPM | ВНР | RPM | ВНР | RPM | BHP | RPM | BHP | RPM | BHP | RPM | BHP | RPM | ВНР | | 1600 | 848 | 0.48 | 905 | 0.53 | 961 | 0.57 | 1015 | 0.61 | 1064 | 0.66 | 1107 | 0.69 | 1148 | 0.73 | 1189 | 0.76 | | 1700 | 898 | 0.56 | 952 | 0.60 | 1005 | 0.65 | 1054 | 0.69 | 1099 | 0.73 | 1140 | 0.77 | 1180 | 0.80 | 1221 | 0.83 | | 1800 | 948 | 0.63 | 998 | 0.68 | 1047 | 0.73 | 1093 | 0.78 | 1136 | 0.82 | 1175 | 0.85 | 1214 | 0.88 | 1255 | 0.91 | | 1900 | 996 | 0.72 | 1042 | 0.77 | 1088 | 0.82 | 1132 | 0.86 | 1173 | 0.90 | 1211 | 0.94 | 1250 | 0.97 | 1290 | 1.00 | | 2000 | 1041 | 0.81 | 1084 | 0.86 | 1128 | 0.91 | 1170 | 0.95 | 1210 | 0.99 | 1249 | 1.03 | 1287 | 1.06 | 1326 | 1.10 | | 2100 | 1084 | 0.91 | 1126 | 0.95 | 1168 | 1.00 | 1209 | 1.04 | 1249 | 1.08 | 1287 | 1.12 | 1324 | 1.17 | 1362 | 1.21 | | 2200 | 1128 | 1.01 | 1169 | 1.05 | 1210 | 1.10 | 1250 | 1.14 | 1288 | 1.19 | 1326 | 1.23 | 1363 | 1.28 | 1399 | 1.34 | | 2300 | 1173 | 1.11 | 1214 | 1.16 | 1253 | 1.20 | 1292 | 1.25 | 1329 | 1.30 | 1366 | 1.36 | 1402 | 1.42 | 1437 | 1.48 | | 2400 | 1220 | 1.23 | 1259 | 1.28 | 1297 | 1.33 | 1335 | 1.38 | 1371 | 1.44 | 1406 | 1.50 | 1442 | 1.57 | 1476 | 1.63 | | Air | | | | | | | Exte | rnal Sta | atic - in. | w.g. | | | | | | | | Volume | 0. | 90 | 1. | 00 | 1. | 10 | 1.3 | 20 | 1.3 | 30 | 1.4 | 40 | 1. | 50 | 1.0 | 60 | | cfm | RPM | BHP ВНР | | 1600 | 1232 | 0.79 | 1274 | 0.82 | 1316 | 0.86 | 1356 | 0.90 | 1395 | 0.94 | 1433 | 0.99 | 1470 | 1.04 | 1506 | 1.09 | | 1700 | 1263 | 0.86 | 1304 | 0.90 | 1344 | 0.94 | 1383 | 0.99 | 1421 | 1.04 | 1458 | 1.09 | 1494 | 1.14 | 1530 | 1.19 | | 1800 | 1295 | 0.95 | 1335 | 0.99 | 1374 | 1.04 | 1412 | 1.09 | 1448 | 1.14 | 1484 | 1.20 | 1520 | 1.25 | 1556 | 1.30 | | 1900 | 1329 | 1.04 | 1368 | 1.09 | 1405 | 1.15 | 1441 | 1.20 | 1477 | 1.26 | 1513 | 1.31 | 1548 | 1.37 | 1583 | 1.42 | | 2000 | 1364 | 1.15 | 1401 | 1.21 | 1437 | 1.27 | 1472 | 1.33 | 1507 | 1.38 | 1543 | 1.44 | 1578 | 1.49 | 1613 | 1.54 | | 2100 | 1399 | 1.27 | 1435 | 1.33 | 1470 | 1.40 | 1505 | 1.46 | 1539 | 1.51 | 1574 | 1.56 | 1609 | 1.61 | 1645 | 1.66 | | 2200 | 1435 | 1.40 | 1470 | 1.47 | 1504 | 1.53 | 1538 | 1.59 | 1573 | 1.65 | 1608 | 1.70 | 1642 | 1.74 | 1678 | 1.79 | | 2300 | 1472 | 1.54 | 1506 | 1.61 | 1540 | 1.67 | 1574 | 1.73 | 1608 | 1.78 | 1642 | 1.83 | 1677 | 1.88 | 1712 | 1.93 | | 2400 | 1510 | 1.7 | 1544 | 1.76 | 1577 | 1.82 | 1610 | 1.88 | 1644 | 1.93 | 1678 | 1.97 | 1713 | 2.02 | 1748 | 2.07 | | HORIZON | NTAL | | | | | | | | | | | | | | | | | A ! | | | | | | | | | | | | | | | | | | Air | | | | | | | Exte | rnal Sta | itic - in. | w.g. | | | | | | | | Volume | 0. | 10 | 0.2 | 20 | | 30 | Exte
0. | | tic - in. | | 0.0 | | 0. | 70 | 0.8 | 80 | | Volume
cfm | RPM | 10
BHP | 0.: | ВНР | RPM | ВНР | | | | | RPM | ВНР | RPM | 70
BHP | RPM | ВНР | | Volume
cfm
1600 | | | RPM 820 | | RPM 879 | BHP 0.52 | 0.4 | 40 | 0. | 50 | | BHP 0.65 | RPM 1090 | | | | | Volume
cfm
1600
1700 | RPM 761 803 | ВНР | RPM
820
861 | 0.47
0.53 | RPM
879
918 | 0.52
0.58 | 937
973 | 40
BHP | 994
1025 | 50
BHP | RPM | 0.65
0.72 | RPM
1090
1114 | BHP 0.69 0.75 | RPM
1132
1155 | 0.72
0.78 | | Volume
cfm
1600
1700
1800 | RPM 761 803 846 | 0.43
0.49
0.56 | RPM 820 | 0.47
0.53
0.60 | RPM 879 918 955 | BHP 0.52 | 937
973
1008 | BHP 0.56 0.63 0.70 | 994
1025
1056 | BHP 0.61 | RPM 1045 | 0.65
0.72
0.79 | RPM
1090
1114
1140 | BHP 0.69 | RPM
1132
1155
1181 | 0.72
0.78
0.85 | | Volume
cfm
1600
1700
1800
1900 | RPM 761 803 | 0.43
0.49 | RPM
820
861 | 0.47
0.53 | 879
918
955
993 | 0.52
0.58 | 937
973 | BHP 0.56 0.63 | 994
1025 | BHP 0.61 0.67 | RPM
1045
1072 | 0.65
0.72 | RPM
1090
1114
1140
1168 | BHP 0.69 0.75 | RPM
1132
1155 | 0.72
0.78 | | Volume cfm 1600 1700 1800 1900 2000 | RPM 761 803 846 889 933 | 0.43
0.49
0.56
0.63
0.71 | 820
861
901
941
981 | 0.47
0.53
0.60
0.68
0.76 | RPM
879
918
955
993
1030 | 0.52
0.58
0.65
0.73
0.81 | 937
973
1008
1042
1076 | BHP 0.56 0.63 0.70 0.78 0.86 | 0.8
RPM
994
1025
1056
1087
1119 | 50
BHP
0.61
0.67
0.75
0.83
0.91 | RPM
1045
1072
1099
1129
1159 | 0.65
0.72
0.79
0.87
0.95 | RPM
1090
1114
1140
1168
1198 | 0.69
0.75
0.82
0.90
0.98 | RPM
1132
1155
1181
1209
1238 | 0.72
0.78
0.85
0.93
1.01 | | Volume cfm 1600 1700 1800 1900 2000 2100 | RPM
761
803
846
889
933
974 | 0.43
0.49
0.56
0.63
0.71
0.79 | 820
861
901
941
981
1020 | 0.47
0.53
0.60
0.68
0.76
0.85 | 879
918
955
993
1030
1065 | 0.52
0.58
0.65
0.73
0.81
0.90 | 937
973
1008
1042
1076
1109 | 940
BHP
0.56
0.63
0.70
0.78
0.86
0.96 | 0.8
RPM
994
1025
1056
1087
1119
1151 | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00 | RPM
1045
1072
1099
1129
1159
1190 | 0.65
0.72
0.79
0.87
0.95
1.04 | RPM
1090
1114
1140
1168
1198
1229 | 0.69
0.75
0.82
0.90
0.98
1.07 |
RPM
1132
1155
1181
1209
1238
1268 | 0.72
0.78
0.85
0.93
1.01
1.11 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 | RPM 761 803 846 889 933 974 1013 | 0.43
0.49
0.56
0.63
0.71
0.79 | 820
861
901
941
981
1020
1057 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94 | RPM
879
918
955
993
1030
1065
1100 | BHP
0.52
0.58
0.65
0.73
0.81
0.90
0.99 | 937
973
1008
1042
1076
1109 | 940
BHP
0.56
0.63
0.70
0.78
0.86
0.96
1.05 | 0.8
RPM
994
1025
1056
1087
1119
1151
1183 | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.09 | RPM
1045
1072
1099
1129
1159
1190
1222 | BHP
0.65
0.72
0.79
0.87
0.95
1.04
1.13 | RPM
1090
1114
1140
1168
1198
1229
1261 | 0.69
0.75
0.82
0.90
0.98
1.07 | RPM
1132
1155
1181
1209
1238
1268
1299 | 0.72
0.78
0.85
0.93
1.01
1.11
1.21 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 | RPM 761 803 846 889 933 974 1013 1050 | BHP 0.43 0.49 0.56 0.63 0.71 0.79 0.89 0.99 | RPM
820
861
901
941
981
1020
1057
1093 | BHP
0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04 | RPM
879
918
955
993
1030
1065
1100
1135 | BHP
0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09 | 937
973
1008
1042
1076
1109
1143
1177 | 40
BHP
0.56
0.63
0.70
0.78
0.86
0.96
1.05 | 0.4
RPM
994
1025
1056
1087
1119
1151
1183
1217 | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.18 | RPM
1045
1072
1099
1129
1159
1190
1222
1255 | BHP
0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23 | RPM
1090
1114
1140
1168
1198
1229
1261
1293 | BHP
0.69
0.75
0.82
0.90
0.98
1.07
1.17 | RPM
1132
1155
1181
1209
1238
1268
1299
1331 | BHP
0.72
0.78
0.85
0.93
1.01
1.11
1.21
1.32 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 | RPM 761 803 846 889 933 974 1013 | 0.43
0.49
0.56
0.63
0.71
0.79 | 820
861
901
941
981
1020
1057 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94 | RPM
879
918
955
993
1030
1065
1100 | BHP
0.52
0.58
0.65
0.73
0.81
0.90
0.99 | 937
973
1008
1042
1076
1109
1143
1177
1211 | ### Application Applicat | 0.4
RPM
994
1025
1056
1087
1119
1151
1183
1217
1250 | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.09
1.18
1.28 | RPM
1045
1072
1099
1129
1159
1190
1222 | BHP
0.65
0.72
0.79
0.87
0.95
1.04
1.13 | RPM
1090
1114
1140
1168
1198
1229
1261 | 0.69
0.75
0.82
0.90
0.98
1.07 | RPM
1132
1155
1181
1209
1238
1268
1299 | 0.72
0.78
0.85
0.93
1.01
1.11
1.21 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air | RPM 761 803 846 889 933 974 1013 1050 1088 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09 | 820
861
901
941
981
1020
1057
1093
1129 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04 | 879
918
955
993
1030
1065
1100
1135 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte | 940
BHP
0.56
0.63
0.70
0.78
0.86
0.96
1.05
1.14
1.23 | 0.8 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.09
1.18
1.28
w.g. | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 | 0.69
0.75
0.82
0.90
0.98
1.07
1.17
1.27 | RPM
1132
1155
1181
1209
1238
1268
1299
1331
1363 | BHP
0.72
0.78
0.85
0.93
1.01
1.11
1.21
1.32 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume | RPM 761 803 846 889 933 974 1013 1050 1088 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09 | 820
861
901
941
981
1020
1057
1093
1129 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04 | 879
918
955
993
1030
1065
1100
1135
1170 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte | 40
BHP
0.56
0.63
0.70
0.78
0.86
0.96
1.05
1.14
1.23
rnal Sta | 0.8 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.09
1.18
1.28
w.g. | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 | 0.69
0.75
0.82
0.90
0.98
1.07
1.17
1.27
1.38 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 | BHP
0.72
0.78
0.85
0.93
1.01
1.11
1.21
1.32
1.44 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume cfm | RPM 761 803 846 889 933 974 1013 1050 1088 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09 | RPM
820
861
901
941
981
1020
1057
1093
1129 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14 | RPM
879
918
955
993
1030
1065
1100
1135
1170 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19 | 0.4 RPM 937 973 1008 1042 1076 1109 1143 1177 1211 Exte 1.5 RPM | 40
BHP
0.56
0.63
0.70
0.78
0.86
0.96
1.05
1.14
1.23
rnal Sta | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.09
1.18
1.28
w.g.
30
BHP | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 1 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1.: RPM | 0.69
0.75
0.82
0.90
0.98
1.07
1.17
1.27
1.38 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2400 Air Volume cfm 1600 | RPM 761 803 846 889 933 974 1013 1050 1088 RPM 1175 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
1.09
90
BHP
0.76 | 820
861
901
941
981
1020
1057
1093
1129
1.
RPM
1218 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14 | RPM
879
918
955
993
1030
1065
1100
1135
1170
1.
RPM
1260 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82 | 0.4 RPM 937 973 1008 1042 1076 1109 1143 1177 1211 Exte 1.: RPM 1302 | ### BHP 0.56 0.63 0.70 0.78 0.86 0.96 1.05 1.14 1.23 rnal State BHP 0.85 | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 | 50
BHP
0.61
0.67
0.75
0.83
0.91
1.00
1.09
1.18
1.28
w.g.
30
BHP
0.89 | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 1.a. RPM 1383 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1.: RPM 1421 | 0.69
0.75
0.82
0.90
0.98
1.07
1.17
1.27
1.38
50
BHP
0.98 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.4 RPM 1458 | 0.72
0.78
0.85
0.93
1.01
1.11
1.21
1.32
1.44 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume cfm 1600 1700 | RPM 761 803 846 889 933 974 1013 1050 1088 RPM 1175 1198 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
1.09
90
BHP
0.76
0.82 | RPM
820
861
901
941
981
1020
1057
1093
1129
1.
RPM
1218
1241 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79 | RPM
879
918
955
993
1030
1065
1100
1135
1170
1.
RPM
1260
1283 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte
1
RPM
1302
1324 | 40 BHP 0.56 0.63 0.70 0.78 0.86 0.96 1.05 1.14 1.23 rnal Sta 20 BHP 0.85 0.93 | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 | RPM 1045 1072 1099 1129 1159 1222 1255 1289 1.4 RPM 1383 1402 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1 RPM 1421 1439 | 0.69
0.75
0.82
0.90
0.98
1.07
1.17
1.27
1.38
50
BHP
0.98
1.07 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.458 1458 1476 | 0.72
0.78
0.85
0.93
1.01
1.11
1.21
1.32
1.44
60
BHP
1.03
1.12 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume cfm 1600 1700 1800 | RPM 761 803 846 889 933 974 1013 1050 1088 RPM 1175 1198 1223 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09
8HP
0.76
0.82
0.89 | RPM 820 861 901 941 981 1020 1057 1093 1129 1.1 RPM 1218 1241 1265 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79
0.85
0.92 | RPM
879
918
955
993
1030
1065
1100
1135
1170
1.
RPM
1260
1283
1307 |
0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89
0.96 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte
1.3
RPM
1302
1324
1347 | ### A ST | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 1386 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 1.4 RPM 1383 1402 1423 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02
1.11 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 RPM 1421 1439 1459 | 0.69
0.75
0.82
0.90
0.98
1.07
1.17
1.27
1.38
50
BHP
0.98
1.07
1.16 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.1 RPM 1458 1476 1495 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 60 BHP 1.03 1.12 1.21 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume cfm 1600 1700 1800 1900 | RPM 761 803 846 889 933 974 1013 1050 1088 0.: RPM 1175 1198 1223 1250 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09
BHP
0.76
0.82
0.89
0.96 | RPM 820 861 901 941 981 1020 1057 1093 1129 1. RPM 1218 1241 1265 1292 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79
0.85
0.92
1.01 | RPM 879 918 955 993 1030 1065 1100 1135 1170 1. RPM 1260 1283 1307 1332 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89
0.96
1.05 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte
1.:
RPM
1302
1324
1347 | 40 BHP 0.56 0.63 0.70 0.78 0.86 0.96 1.05 1.14 1.23 rnal Sta 20 BHP 0.85 0.93 1.01 1.10 | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 1386 1408 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 1.06 1.15 | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 1.4 RPM 1383 1402 1423 1445 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02
1.11 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1.: RPM 1421 1439 1459 1481 | 8HP 0.69 0.75 0.82 0.90 0.98 1.07 1.17 1.27 1.38 50 8HP 0.98 1.07 1.16 1.27 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.4 RPM 1458 1476 1495 1516 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 60 BHP 1.03 1.12 1.21 1.32 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume cfm 1600 1700 1800 1900 2000 | RPM 761 803 846 889 933 974 1013 1050 1088 RPM 1175 1198 1223 1250 1279 | 90
BHP
0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09
90
BHP
0.76
0.82
0.89
0.96
1.05 | RPM 820 861 901 941 981 1020 1057 1093 1129 1. RPM 1218 1241 1265 1292 1319 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79
0.85
0.92
1.01
1.10 | RPM 879 918 955 993 1030 1065 1100 1135 1170 1. RPM 1260 1283 1307 1332 1358 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89
0.96
1.05
1.15 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte
1.:
RPM
1302
1324
1347
1371
1396 | ## A State of the | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 1386 1408 1432 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 1.06 1.15 1.26 | RPM 1045 1072 1099 1129 1159 1190 1222 1255 1289 1.4 RPM 1383 1402 1423 1445 1468 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02
1.11
1.21 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1.: RPM 1421 1439 1459 1481 1504 | 8HP 0.69 0.75 0.82 0.90 0.98 1.07 1.17 1.27 1.38 50 8HP 0.98 1.07 1.16 1.27 1.38 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.458 1476 1495 1516 1539 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 60 BHP 1.03 1.12 1.21 1.32 1.44 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2400 Air Volume cfm 1600 1700 1800 1900 2000 2100 | RPM 761 803 846 889 933 974 1013 1050 1088 RPM 1175 1198 1223 1250 1279 1308 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09
BHP
0.76
0.82
0.89
0.96
1.05
1.15 | RPM 820 861 901 941 981 1020 1057 1093 1129 1.1 RPM 1218 1241 1265 1292 1319 1347 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79
0.85
0.92
1.01
1.10 | RPM 879 918 955 993 1030 1065 1100 1135 1170 1. RPM 1260 1283 1307 1332 1358 1385 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89
0.96
1.05
1.15
1.26 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte
1
RPM
1302
1324
1347
1371
1396
1421 | ### April 12 ## A | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 1386 1408 1432 1457 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 1.06 1.15 1.26 1.38 | RPM 1045 1072 1099 1129 1159 1222 1255 1289 1.4 RPM 1383 1402 1423 1445 1468 1493 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02
1.11
1.21
1.32 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1.: RPM 1421 1439 1459 1481 1504 1528 | 8HP 0.69 0.75 0.82 0.90 0.98 1.07 1.17 1.27 1.38 50 8HP 0.98 1.07 1.16 1.27 1.38 1.50 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.458 1476 1495 1516 1539 1563 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 60 BHP 1.03 1.12 1.21 1.32 1.44 1.56 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2300 2400 Air Volume cfm 1600 1700 1800 1900 2000 2100 2200 | RPM 761 803 846 889 933 974 1013 1050 1088 0.8 RPM 1175 1198 1223 1250 1279 1308 1338 | 90
BHP
0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09
90
BHP
0.76
0.82
0.89
0.96
1.05
1.15 | RPM 820 861 901 941 981 1020 1057 1093 1129 1.1 RPM 1218 1241 1265 1292 1319 1347 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79
0.85
0.92
1.01
1.10
1.20
1.31 | RPM 879 918 955 993 1030 1065 1100 1135 1170 1. RPM 1260 1283 1307 1332 1358 1385 1412 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89
0.96
1.05
1.15
1.26
1.38 | 937 973 1008 1042 1076 1109 1143 1177 1211 Exte 1.: RPM 1302 1344 1347 1371 1396 1421 1448 | ### Application Applicat | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 1386 1408 1432 1457 1483 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 1.06 1.15 1.26 1.38 1.51 | RPM 1045 1072 1099 1129 1159 1222 1255 1289 1.402 1423 1445 1468 1493 1518 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02
1.11
1.21
1.32
1.44
1.57 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 RPM 1421 1439 1459 1481 1504 1528 1553 | 8HP 0.69 0.75 0.82 0.90 0.98 1.07 1.17 1.27 1.38 50 8HP 0.98 1.07 1.16 1.27 1.38 1.50 1.63 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 RPM 1458 1476 1495 1516 1539 1563 1588 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 60 BHP 1.03 1.12 1.21 1.32 1.44 1.56 1.68 | | Volume cfm 1600 1700 1800 1900 2000 2100 2200 2400 Air Volume cfm 1600 1700 1800 1900 2000 2100 | RPM 761 803 846 889 933 974 1013 1050 1088 RPM 1175 1198 1223 1250 1279 1308 | 0.43
0.49
0.56
0.63
0.71
0.79
0.89
0.99
1.09
BHP
0.76
0.82
0.89
0.96
1.05
1.15 | RPM 820 861 901 941 981 1020 1057 1093 1129 1.1 RPM 1218 1241 1265 1292 1319 1347 | 0.47
0.53
0.60
0.68
0.76
0.85
0.94
1.04
1.14
00
BHP
0.79
0.85
0.92
1.01
1.10 | RPM 879 918 955 993 1030 1065 1100 1135 1170 1. RPM 1260 1283 1307 1332 1358 1385 | 0.52
0.58
0.65
0.73
0.81
0.90
0.99
1.09
1.19
10
BHP
0.82
0.89
0.96
1.05
1.15
1.26 | 937
973
1008
1042
1076
1109
1143
1177
1211
Exte
1
RPM
1302
1324
1347
1371
1396
1421 | ### April 12 ## A | 0.4 RPM 994 1025 1056 1087 1119 1151 1183 1217 1250 atic - in. RPM 1343 1364 1386 1408 1432 1457 | 50 BHP 0.61 0.67 0.75 0.83 0.91 1.00 1.09 1.18 1.28 w.g. 30 BHP 0.89 0.97 1.06 1.15 1.26 1.38 | RPM 1045 1072 1099 1129 1159 1222 1255 1289 1.4 RPM 1383 1402 1423 1445 1468 1493 | 0.65
0.72
0.79
0.87
0.95
1.04
1.13
1.23
1.33
40
BHP
0.93
1.02
1.11
1.21
1.32 | RPM 1090 1114 1140 1168 1198 1229 1261 1293 1326 1.: RPM 1421 1439 1459 1481 1504 1528 | 8HP 0.69 0.75 0.82 0.90 0.98 1.07 1.17 1.27 1.38 50 8HP 0.98 1.07 1.16 1.27 1.38 1.50 | RPM 1132 1155 1181 1209 1238 1268 1299 1331 1363 1.458 1476 1495 1516 1539 1563 | BHP 0.72 0.78 0.85 0.93 1.01 1.11 1.21 1.32 1.44 60 BHP 1.03 1.12 1.21 1.32 1.44 1.56 | ## ZGD074S5T BELT DRIVE (THREE PHASE) #### BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD: DOWNFLOW - 1 Any factory installed options air resistance (heat section, economizer, wet coil, etc.). - 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.). See page 27 for blower motors and drives and wet coil and options/accessory air resistance data. | Air | | | | | | | Exte | rnal Sta | atic - in. | w.a. | | | | | | | |---|---|---
---|---|---|--|--|---|---|---|--|---|--|---|---|---| | Volume | 0. | 10 | 0.2 | 20 | 0. | 30 | | 40 | 0. | | 0. | 60 | 0. | 70 | 0. | 80 | | cfm | RPM | BHP | 1900 | 578 | 0.44 | 610 | 0.49 | 643 | 0.54 | 678 | 0.60 | 714 | 0.65 | 749 | 0.70 | 785 | 0.76 | 819 | 0.82 | | 2000 | 600 | 0.50 | 632 | 0.56 | 665 | 0.61 | 699 | 0.66 | 734 | 0.71 | 769 | 0.77 | 803 | 0.83 | 837 | 0.90 | | 2100 | 623 | 0.57 | 655 | 0.62 | 688 | 0.68 | 721 | 0.73 | 755 | 0.79 | 789 | 0.84 | 822 | 0.91 | 854 | 0.98 | | 2200 | 647 | 0.65 | 678 | 0.70 | 711 | 0.75 | 743 | 0.81 | 776 | 0.86 | 809 | 0.93 | 841 | 1.00 | 872 | 1.06 | | 2300 | 671 | 0.73 | 702 | 0.78 | 734 | 0.83 | 766 | 0.89 | 798 | 0.95 | 829 | 1.02 | 860 | 1.09 | 890 | 1.16 | | 2400 | 696 | 0.81 | 726 | 0.87 | 757 | 0.92 | 788 | 0.98 | 819 | 1.04 | 850 | 1.11 | 880 | 1.19 | 909 | 1.26 | | 2500 | 720 | 0.90 | 750 | 0.95 | 780 | 1.01 | 811 | 1.07 | 841 | 1.14 | 871 | 1.22 | 900 | 1.30 | 929 | 1.37 | | 2600 | 745 | 0.99 | 774 | 1.05 | 804 | 1.11 | 834 | 1.17 | 864 | 1.25 | 893 | 1.33 | 921 | 1.41 | 949 | 1.49 | | 2700 | 770 | 1.09 | 799 | 1.15 | 828 | 1.21 | 858 | 1.28 | 887 | 1.36 | 916 | 1.44 | 943 | 1.53 | 969 | 1.61 | | 2800 | 795 | 1.19 | 824 | 1.25 | 853 | 1.33 | 882 | 1.40 | 911 | 1.48 | 939 | 1.56 | 965 | 1.65 | 990 | 1.73 | | 2900 | 820 | 1.30 | 849 | 1.37 | 878 | 1.45 | 907 | 1.53 | 935 | 1.61 | 962 | 1.70 | 988 | 1.78 | 1012 | 1.86 | | Air | | | | | , | | Exte | rnal Sta | tic - in. | w.g. | | | | | | | | Volume | 0.9 | 90 | 1.0 | 00 | 1. | 10 | 1. | 20 | 1.3 | 30 | 1.4 | 40 | 1. | 50 | 1. | 60 | | cfm | RPM | BHP | 1900 | 853 | 0.88 | 885 | 0.94 | 915 | 0.99 | 944 | 1.05 | 971 | 1.11 | 996 | 1.17 | 1021 | 1.23 | 1045 | 1.29 | | 2000 | 869 | 0.96 | 899 | 1.01 | 929 | 1.07 | 957 | 1.13 | 984 | 1.19 | 1009 | 1.25 | 1033 | 1.31 | 1058 | 1.38 | | 2100 | 885 | 1.04 | 915 | 1.10 | 944 | 1.15 | 971 | 1.22 | 997 | 1.28 | 1022 | 1.34 | 1046 | 1.40 | 1070 | 1.46 | | 2200 | 902 | 1.13 | 931 | 1.19 | 959 | 1.24 | 986 | 1.31 | 1012 | 1.37 | 1036 | 1.43 | 1060 | 1.50 | 1084 | 1.56 | | 2300 | 920 | 1.23 | 948 | 1.29 | 975 | 1.35 | 1001 | 1.41 | 1027 | 1.47 | 1051 | 1.53 | 1075 | 1.60 | 1098 | 1.66 | | 2400 | 938 | 1.33 | 965 | 1.39 | 992 | 1.45 | 1017 | 1.52 | 1042 | 1.58 | 1066 | 1.64 | 1090 | 1.70 | 1113 | 1.77 | | 2500 | 956 | 1.44 | 983 | 1.51 | 1009 | 1.57 | 1034 | 1.63 | 1059 | 1.69 | 1082 | 1.75 | 1105 | 1.82 | 1128 | 1.88 | | 2600 | 975 | 1.56 | 1001 | 1.63 | 1026 | 1.69 | 1051 | 1.75 | 1075 | 1.81 | 1098 | 1.87 | 1121 | 1.93 | 1143 | 2.00 | | 2700 | 995 | 1.68 | 1020 | 1.75 | 1044 | 1.81 | 1069 | 1.87 | 1092 | 1.93 | 1114 | 1.99 | 1136 | 2.06 | 1158 | 2.13 | | 2800 | 1015 | 1.81 | 1039 | 1.87 | 1063 | 1.94 | 1086 | 2.00 | 1109 | 2.06 | 1131 | 2.12 | 1152 | 2.19 | 1174 | 2.26 | | 2900 | 1035 | 1.94 | 1058 | 2.00 | 1081 | 2.07 | 1104 | 2.13 | 1126 | 2.19 | 1147 | 2.26 | 1168 | 2.33 | 1189 | 2.40 | | HORIZO | NTAL | | | | | | | | | | | | | | | | | Air | | 10 | | | | | | | tic - in. | | | | | | | | | Volume | 0. | 10 | 0.2 | | | 30 | | 40 | 0. | | 0. | | 0. | 70 | . 0. | 80 | | | DDM | DUD | DDM | DIID | DDM | DIID | | DIID | DDM | | | DIID | DDM | | | DIID | | cfm | RPM | BHP | RPM | ВНР | RPM | BHP | | cfm
1900 | 581 | 0.44 | 618 | 0.49 | 655 | 0.54 | 692 | 0.59 | 729 | 0.64 | 765 | 0.69 | 800 | BHP 0.75 | RPM 833 | 0.80 | | 2000 | 581
602 | 0.44 | 618
639 | 0.49
0.55 | 655
676 | 0.54
0.61 | 692
713 | 0.59
0.66 | 729
749 | 0.64 | 765
784 | 0.69
0.76 | 800
818 | 0.75
0.82 | RPM
833
850 | 0.80 | | 2000
2100 | 581
602
625 | 0.44
0.50
0.57 | 618
639
661 | 0.49
0.55
0.62 | 655
676
698 | 0.54
0.61
0.67 | 692
713
735 | 0.59
0.66
0.73 | 729
749
770 | 0.64
0.71
0.78 | 765
784
804 | 0.69
0.76
0.84 | 800
818
837 | 0.75
0.82
0.90 | 833
850
868 | 0.80
0.88
0.96 | | cfm
1900
2000
2100
2200 | 581
602
625
648 | 0.44
0.50
0.57
0.64 | 618
639
661
685 | 0.49
0.55
0.62
0.69 | 655
676
698
721 | 0.54
0.61
0.67
0.75 | 692
713
735
757 | 0.59
0.66
0.73
0.80 | 729
749
770
791 | 0.64
0.71
0.78
0.86 | 765
784
804
824 | 0.69
0.76
0.84
0.92 | 800
818
837
856 | 0.75
0.82
0.90
0.98 | 833
850
868
886 | 0.80
0.88
0.96
1.05 | | cfm
1900
2000
2100
2200
2300 | 581
602
625
648
673 | 0.44
0.50
0.57
0.64
0.71 | 618
639
661
685
709 | 0.49
0.55
0.62
0.69
0.77 | 655
676
698
721
745 | 0.54
0.61
0.67
0.75
0.83 | 692
713
735
757
780 | 0.59
0.66
0.73
0.80
0.88 | 729
749
770
791
813 | 0.64
0.71
0.78
0.86
0.94 | 765
784
804
824
845 | 0.69
0.76
0.84
0.92
1.01 | 800
818
837
856
876 | 0.75
0.82
0.90
0.98
1.08 | 833
850
868
886
905 | 0.80
0.88
0.96
1.05
1.15 | | cfm
1900
2000
2100
2200
2300
2400 | 581
602
625
648
673
699 | 0.44
0.50
0.57
0.64
0.71
0.79 | 618
639
661
685
709
734 | 0.49
0.55
0.62
0.69
0.77
0.85 | 655
676
698
721
745
769 | 0.54
0.61
0.67
0.75
0.83
0.91 | 692
713
735
757
780
803 | 0.59
0.66
0.73
0.80
0.88
0.97 | 729
749
770
791
813
835 | 0.64
0.71
0.78
0.86
0.94
1.04 | 765
784
804
824
845
866 | 0.69
0.76
0.84
0.92
1.01
1.11 | 800
818
837
856
876
896 | BHP
0.75
0.82
0.90
0.98
1.08
1.18 | RPM
833
850
868
886
905
924 | 0.80
0.88
0.96
1.05
1.15
1.25 | | cfm
1900
2000
2100
2200
2300
2400
2500 | 581
602
625
648
673
699
725 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88 | 618
639
661
685
709
734
759 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94 | 655
676
698
721
745
769
793 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00 | 692
713
735
757
780
803
826 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07 | 729
749
770
791
813
835
857 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14 | 765
784
804
824
845
866
887 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21 | 800
818
837
856
876
896
916 | BHP
0.75
0.82
0.90
0.98
1.08
1.18
1.28 | RPM
833
850
868
886
905
924
944 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36 | | cfm
1900
2000
2100
2200
2300
2400
2500
2600 | 581
602
625
648
673
699
725
752 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97 | 618
639
661
685
709
734
759
785 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04 | 655
676
698
721
745
769
793
818 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10 | 692
713
735
757
780
803
826
850 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17 | 729
749
770
791
813
835
857
880 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25 | 765
784
804
824
845
866
887
909 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32 | 800
818
837
856
876
896
916
937 | BHP
0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40 | RPM
833
850
868
886
905
924
944
964 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 | 581
602
625
648
673
699
725
752
779 |
0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07 | 618
639
661
685
709
734
759
785
811 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14 | 655
676
698
721
745
769
793
818
843 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21 | 692
713
735
757
780
803
826
850
873 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29 | 729
749
770
791
813
835
857
880
902 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37 | 765
784
804
824
845
866
887
909
931 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44 | 800
818
837
856
876
896
916
937 | BHP
0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40 | RPM
833
850
868
886
905
924
944
964
984 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 | 581
602
625
648
673
699
725
752
779
805 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07 | 618
639
661
685
709
734
759
785
811
837 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14 | 655
676
698
721
745
769
793
818
843
868 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33 | 692
713
735
757
780
803
826
850
873 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41 | 729
749
770
791
813
835
857
880
902
925 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37 | 765
784
804
824
845
866
887
909
931
952 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57 | 800
818
837
856
876
896
916
937
958 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52 | RPM
833
850
868
886
905
924
944
964
984
1004 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 | 581
602
625
648
673
699
725
752
779 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07 | 618
639
661
685
709
734
759
785
811 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14 | 655
676
698
721
745
769
793
818
843 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21 | 692
713
735
757
780
803
826
850
873
897
921 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54 | 729
749
770
791
813
835
857
880
902
925
948 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63 | 765
784
804
824
845
866
887
909
931 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44 | 800
818
837
856
876
896
916
937 | BHP
0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40 | RPM
833
850
868
886
905
924
944
964
984 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air | 581
602
625
648
673
699
725
752
779
805
832 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30 | 618
639
661
685
709
734
759
785
811
837
863 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38 | 655
676
698
721
745
769
793
818
843
868
892 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46 | 692
713
735
757
780
803
826
850
873
897
921
Exte | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta | 729 749 770 791 813 835 857 880 902 925 948 atic - in. | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g. | 765
784
804
824
845
866
887
909
931
952
974 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71 | 800
818
837
856
876
896
916
937
958
979 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80 | RPM
833
850
868
886
905
924
944
964
984
1004 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 | 581
602
625
648
673
699
725
752
779
805
832 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30 | 618
639
661
685
709
734
759
785
811
837
863 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38 | 655
676
698
721
745
769
793
818
843
868
892 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46 | 692
713
735
757
780
803
826
850
873
897
921
Exte | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta | 729
749
770
791
813
835
857
880
902
925
948
atic - in. | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g. | 765
784
804
824
845
866
887
909
931
952
974 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71 | 800
818
837
856
876
896
916
937
958
979
1000 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80 | RPM
833
850
868
886
905
924
944
964
984
1004 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume | 581
602
625
648
673
699
725
752
779
805
832 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30 | 618
639
661
685
709
734
759
785
811
837
863 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38 | 655
676
698
721
745
769
793
818
843
868
892 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46 | 692
713
735
757
780
803
826
850
873
897
921
Exte | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta | 729 749 770 791 813 835 857 880 902 925 948 atic - in. | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30 | 765
784
804
824
845
866
887
909
931
952
974 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71 | 800
818
837
856
876
896
916
937
958
979
1000 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80 | RPM
833
850
868
886
905
924
944
964
984
1004
1024 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 | 581
602
625
648
673
699
725
752
779
805
832
0. : | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87 | 618
639
661
685
709
734
759
785
811
837
863 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99 | 692
713
735
757
780
803
826
850
873
897
921
Exte
1.
RPM | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12 | 765
784
804
824
845
866
887
909
931
952
974
1.4
RPM
1007 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18 | 800
818
837
856
876
896
916
937
958
979
1000 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25 | RPM
833
850
868
886
905
924
944
964
984
1004
1024
1.
RPM
1056 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm | 581
602
625
648
673
699
725
752
779
805
832 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30 | 618
639
661
685
709
734
759
785
811
837
863 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38 | 655
676
698
721
745
769
793
818
843
868
892 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46 | 692
713
735
757
780
803
826
850
873
897
921
Exte
1. | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta | 729 749 770 791 813 835 857 880 902 925 948
atic - in. RPM | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30 | 765
784
804
824
845
866
887
909
931
952
974 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71 | 800
818
837
856
876
896
916
937
958
979
1000 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80 | RPM
833
850
868
886
905
924
944
964
984
1004
1024 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 2100 | 581
602
625
648
673
699
725
752
779
805
832
0. :
RPM
864
881 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87
0.95
1.03 | 618
639
661
685
709
734
759
785
811
837
863
1.
RPM
895
911 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM
924 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
10
BHP
0.99
1.08 | 692
713
735
757
780
803
826
850
873
897
921
Exte
1.
RPM
953
967 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21 | 765
784
804
824
845
866
887
909
931
952
974
1.0
RPM
1007 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27 | 800
818
837
856
876
896
916
937
958
979
1000
1.
RPM | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25
1.34 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 | 581
602
625
648
673
699
725
752
779
805
832
0. :
RPM
864
881 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87
0.95 | 618
639
661
685
709
734
759
785
811
837
863
1.
RPM
895
911
927 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM
924
940
955 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17 | 692
713
735
757
780
803
826
850
873
897
921
Exte
1.
RPM
953
967 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30 | 765
784
804
824
845
866
887
909
931
952
974
1.07
1007
1020
1033 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37 | 800
818
837
856
876
896
916
937
958
979
1000
1.
RPM
1032
1044
1057 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25
1.34
1.43 | RPM
833
850
868
886
905
924
944
964
984
1004
1024
1.
RPM
1056
1068
1080 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 2100 | 581
602
625
648
673
699
725
752
779
805
832
0. :
RPM
864
881
898
916 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87
0.95
1.03
1.12 | 618
639
661
685
709
734
759
785
811
837
863
1.
RPM
895
911
927
944 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10
1.19 | 655
676
698
721
745
769
793
818
843
868
892
1. RPM
924
940
955
971 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17
1.26 | 692
713
735
757
780
803
826
850
873
897
921
Exte
1.
RPM
953
967
982 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23
1.33 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 1023 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30
1.40 | 765
784
804
824
845
866
887
909
931
952
974
1.
RPM
1007
1020
1033
1047 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37
1.47 | 800
818
837
856
876
896
916
937
958
979
1000
1.
RPM
1032
1044
1057 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25
1.34
1.43
1.54 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 1080 1093 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50
1.60 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 2100 2200 2300 | 581
602
625
648
673
699
725
752
779
805
832
RPM
864
881
898
916
934 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87
0.95
1.03
1.12
1.22 | 618
639
661
685
709
734
759
785
811
837
863
1.
RPM
895
911
927
944 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10
1.19
1.29 | 655
676
698
721
745
769
793
818
843
868
892
1. RPM
924
940
955
971
988 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17
1.26
1.36 | 692
713
735
757
780
803
826
850
873
897
921
Exte
1.
RPM
953
967
982
998 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23
1.33
1.43 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 1023 1038 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30
1.40
1.50 | 765
784
804
824
845
866
887
909
931
952
974
1.
RPM
1007
1020
1033
1047
1062 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37
1.47 | 800
818
837
856
876
896
916
937
958
979
1000
1.
RPM
1032
1044
1057
1071 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25
1.34
1.43
1.54
1.65 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 1080 1093 1107 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50
1.60
1.71 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 2100 2200 2300 2400 | 581
602
625
648
673
699
725
752
779
805
832
RPM
864
881
898
916
934
952 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
BHP
0.87
0.95
1.03
1.12
1.22
1.32 | 618
639
661
685
709
734
759
785
811
837
863
1. (
RPM
895
911
927
944
961 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10
1.19
1.29 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM
924
940
955
971
988
1005 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17
1.26
1.36
1.47 | 692 713 735 757 780 803 826 850 873 897 921 Exte 1. RPM 953 967 982 998 1014 1030 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23
1.33
1.43
1.54 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 1023 1038 1054 |
0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30
1.40
1.50
1.62 | 765 784 804 824 845 866 887 909 931 952 974 1.4 RPM 1007 1020 1033 1047 1062 1077 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37
1.47
1.58
1.69 | 800
818
837
856
876
896
916
937
958
979
1000
1.
RPM
1032
1044
1057
1071
1085
1099 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25
1.34
1.43
1.54
1.65
1.76 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 1080 1093 1107 1121 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50
1.60
1.71
1.83 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 2100 2200 2300 2400 2500 | 581
602
625
648
673
699
725
752
779
805
832
RPM
864
881
898
916
934
952
971 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
BHP
0.87
0.95
1.03
1.12
1.22
1.32
1.43 | 618
639
661
685
709
734
759
785
811
837
863
1. (
RPM
895
911
927
944
961
979 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10
1.19
1.29
1.40
1.51 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM
924
940
955
971
988
1005
1022 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17
1.26
1.36
1.47
1.59 | 692 713 735 757 780 803 826 850 873 897 921 Exte 1. RPM 953 967 982 998 1014 1030 1046 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23
1.33
1.43
1.54
1.66 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 1023 1038 1054 1069 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30
1.40
1.50
1.62
1.74 | 765 784 804 824 845 866 887 909 931 952 974 1.007 1020 1033 1047 1062 1077 1092 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37
1.47
1.58
1.69
1.81 | 800
818
837
856
876
896
916
937
958
979
1000
1.
RPM
1032
1044
1057
1071
1085
1099
1114 | 0.75
0.82
0.90
0.98
1.08
1.18
1.28
1.40
1.52
1.66
1.80
50
BHP
1.25
1.34
1.43
1.54
1.65
1.76 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 1080 1093 1107 1121 1135 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50
1.60
1.71
1.83
1.95 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2000 2100 2200 2300 2400 2500 2600 | 581
602
625
648
673
699
725
752
779
805
832
RPM
864
881
898
916
934
952
971 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87
0.95
1.03
1.12
1.22
1.32
1.43
1.55 | 618
639
661
685
709
734
759
785
811
837
863
1.
RPM
895
911
927
944
961
979
997 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10
1.19
1.29
1.40
1.51
1.63 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM
924
940
955
971
988
1005
1022
1039 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17
1.26
1.36
1.47
1.59
1.71 | 692 713 735 757 780 803 826 850 873 897 921 Exte 1. RPM 953 967 982 998 1014 1030 1046 1063 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23
1.33
1.43
1.54
1.66
1.79 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 1023 1038 1054 1069 1086 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30
1.40
1.50
1.62
1.74
1.86 | 765 784 804 824 845 866 887 909 931 952 974 1.07 1020 1033 1047 1062 1077 1092 1108 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37
1.47
1.58
1.69
1.81
1.94 | 800
818
837
856
876
916
937
958
979
1000
1.
RPM
1032
1044
1057
1071
1085
1099
1114
1129 | 0.75 0.82 0.90 0.98 1.08 1.18 1.28 1.40 1.52 1.66 1.80 50 BHP 1.25 1.34 1.43 1.54 1.65 1.76 1.88 2.01 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 1080 1093 1107 1121 1135 1150 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50
1.60
1.71
1.83
1.95
2.07 | | cfm 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 Air Volume cfm 1900 2200 2300 2400 2500 2500 2600 2700 | 581
602
625
648
673
699
725
752
779
805
832
RPM
864
881
898
916
934
952
971
990
1009 | 0.44
0.50
0.57
0.64
0.71
0.79
0.88
0.97
1.07
1.18
1.30
90
BHP
0.87
0.95
1.03
1.12
1.22
1.32
1.43
1.55
1.68 | 618
639
661
685
709
734
759
785
811
837
863
1. 1
RPM
895
911
927
944
961
979
997
1015 | 0.49
0.55
0.62
0.69
0.77
0.85
0.94
1.04
1.14
1.26
1.38
00
BHP
0.93
1.01
1.10
1.19
1.29
1.40
1.51
1.63
1.76 | 655
676
698
721
745
769
793
818
843
868
892
1.
RPM
924
940
955
971
988
1005
1022
1039
1057 | 0.54
0.61
0.67
0.75
0.83
0.91
1.00
1.10
1.21
1.33
1.46
BHP
0.99
1.08
1.17
1.26
1.36
1.47
1.59
1.71
1.84 | 692 713 735 757 780 803 826 850 873 897 921 Exte 1. RPM 953 967 982 998 1014 1030 1046 1063 1080 1097 1115 | 0.59
0.66
0.73
0.80
0.88
0.97
1.07
1.17
1.29
1.41
1.54
rnal Sta
20
BHP
1.06
1.14
1.23
1.33
1.43
1.54
1.66
1.79
1.92 | 729 749 770 791 813 835 857 880 902 925 948 atic - in. RPM 980 994 1008 1023 1038 1054 1069 1086 1102 | 0.64
0.71
0.78
0.86
0.94
1.04
1.14
1.25
1.37
1.49
1.63
w.g.
30
BHP
1.12
1.21
1.30
1.40
1.50
1.62
1.74
1.86
1.99 | 765 784 804 824 845 866 887 909 931 952 974 1.07 1020 1033 1047 1062 1077 1092 1108 1124 | 0.69
0.76
0.84
0.92
1.01
1.11
1.21
1.32
1.44
1.57
1.71
40
BHP
1.18
1.27
1.37
1.47
1.58
1.69
1.81
1.94
2.07 | 800
818
837
856
876
916
937
958
979
1000
1.
RPM
1032
1044
1057
1071
1085
1099
1114
1129 | 8HP 0.75 0.82 0.90 0.98 1.08 1.18 1.28 1.40 1.52 1.66 1.80 50 8HP 1.25 1.34 1.43 1.54 1.65 1.76 1.88 2.01 2.14 | RPM 833 850 868 886 905 924 944 964 984 1004 1024 1. RPM 1056 1068 1080 1093 1107 1121 1135 1150 1166 | 0.80
0.88
0.96
1.05
1.15
1.25
1.36
1.48
1.60
1.74
1.88
60
BHP
1.31
1.40
1.50
1.60
1.71
1.83
1.95
2.07
2.21 | #### **BELT DRIVE KIT SPECIFICATIONS - ZGD036-060** | Madal | Motor HP | | Conneda | Drive Kits and RPM Range | | | | | | |--------|----------|---------|---------|--------------------------|------------|------------|------------|-------------------|--| | Model | Nominal | Maximum | Speeds | ZA01 | ZA02 | ZA03 | ZA04 | ¹ ZA05 | | | ZGD036 | 1 | 1.15 | 1 | 678 - 1035 | | | 964 - 1471 | | | | ZGD048 | 1 | 1.15 | 1 | | 803 - 1226 | | | | | | ZGD060 | 1.5 | 1.7 | 1 | | | 906 - 1383 | | 1098-1490 | | #### **BELT DRIVE KIT SPECIFICATIONS - ZGD074** | Model | Motor HP | | Speeds | Drive Kits and RPM Range | | | | | |--------|----------|---------|--------|--------------------------|------------|------------|--|--| | Wodei | Nominal | Maximum | Speeus | ZAA02 | ZAA03 | ZAA04 | | | | ZGD074 | 2 | 2.3 | 2 | 632 - 875 | 798 - 1105 | 921 - 1228 | | | NOTE - Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor HP required. Maximum usable HP of motors furnished are shown. In Canada, nominal motor HP is also maximum usable motor HP. If motors of comparable HP are used, be sure to keep within the service factor limitations outlined on the motor nameplate. #### **POWER EXHAUST FAN PERFORMANCE** | Return Air System Static Pressure - in. w.g. | Air Volume Exhausted cfm | |--|--------------------------| | 0.00 | 1865 | | 0.05 | 1785 | | 0.10 | 1710 | | 0.15 | 1630 | | 0.20 | 1545 | | 0.25 | 1450 | | 0.30 | 1350 | | 0.35 | 1240 | # OPTIONS / ACCESSORIES AIR RESISTANCE - in. w.g. | Air Volume | Wet Ind | oor Coil | Gas Heat | Exchanger | Econo | omizer | |------------|----------------|----------------|----------|-----------|----------|------------| | cfm | ZGD036, ZGD048 | ZGD060, ZGD074 | Medium | High | Downflow | Horizontal | | 900 | 0.01 | | 0.05 | 0.06 | 0.03 | 0.04 | | 1000 | 0.02 | | 0.06 | 0.06 | 0.03 | 0.05 | | 1100 | 0.02 | | 0.06 | 0.07
 0.04 | 0.05 | | 1200 | 0.02 | | 0.06 | 0.07 | 0.05 | 0.06 | | 1300 | 0.03 | | 0.07 | 0.07 | 0.05 | 0.07 | | 1400 | 0.03 | | 0.07 | 0.08 | 0.06 | 0.08 | | 1500 | 0.04 | | 0.07 | 0.08 | 0.07 | 0.08 | | 1600 | 0.04 | 0.03 | 0.07 | 0.08 | 0.08 | 0.09 | | 1700 | 0.05 | 0.03 | 0.07 | 0.08 | 0.09 | 0.10 | | 1800 | 0.05 | 0.03 | 0.06 | 0.08 | 0.10 | 0.11 | | 1900 | 0.06 | 0.04 | 0.06 | 0.08 | 0.11 | 0.12 | | 2000 | 0.06 | 0.04 | 0.07 | 0.09 | 0.12 | 0.13 | | 2100 | | 0.05 | 0.08 | 0.10 | 0.13 | 0.14 | | 2200 | | 0.05 | 0.10 | 0.12 | 0.14 | 0.15 | | 2300 | | 0.05 | 0.11 | 0.14 | 0.15 | 0.16 | | 2400 | | 0.06 | 0.11 | 0.13 | 0.16 | 0.18 | | 2500 | | 0.06 | 0.11 | 0.15 | 0.18 | 0.19 | | 2600 | | 0.07 | 0.13 | 0.16 | 0.19 | 0.20 | | 2700 | | 0.07 | 0.15 | 0.18 | 0.20 | 0.21 | | 2800 | | 0.07 | 0.13 | 0.16 | 0.22 | 0.23 | | 2900 | | 0.08 | 0.13 | 0.18 | 0.23 | 0.24 | | OUTDOOR SO | OUTDOOR SOUND DATA | | | | | | | | | |------------|--------------------|---------------------------|-----|------|------|------|------|-----------------|--| | 0. | Octave | ¹ Sound Rating | | | | | | | | | Size | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | Number
(dBA) | | | 036 | 66 | 70 | 73 | 72 | 70 | 67 | 60 | 78 | | | 048 | 68 | 71 | 75 | 74 | 71 | 68 | 63 | 80 | | | 060 | 64 | 68 | 72 | 73 | 69 | 67 | 63 | 78 | | | 074 | 73 | 76 | 80 | 78 | 73 | 68 | 66 | 84 | | $[\]ensuremath{\mathsf{NOTE}}$ - The octave sound power data does not include tonal corrections. Page 27 508704-01 5/2025 ¹ Sound Rating Number according to AHRI Standard 270-2008. SRN is the overall A-Weighted Sound Power Level, (LWA), dBA (100 Hz to 10,000 Hz). ## CEILING DIFFUSERS AIR RESISTANCE (in. w.g.) | Air Volume | RTD | 9-65S Step-Dow | n Diffuser | FD9-65S | RTD1 | 1-95S Step-Dow | n Diffuser | FD11-95S | |------------|----------------|----------------------|--------------------------|-------------------|----------------|----------------------|--------------------------|-------------------| | cfm | 2 Ends
Open | 1 Side & 2 Ends Open | All Ends &
Sides Open | Flush
Diffuser | 2 Ends
Open | 1 Side & 2 Ends Open | All Ends &
Sides Open | Flush
Diffuser | | 800 | 0.15 | 0.13 | 0.11 | 0.11 | | | | | | 1000 | 0.19 | 0.16 | 0.14 | 0.14 | | | | | | 1200 | 0.25 | 0.20 | 0.17 | 0.17 | | | | | | 1400 | 0.33 | 0.26 | 0.20 | 0.20 | | | | | | 1600 | 0.43 | 0.32 | 0.20 | 0.24 | | | | | | 1800 | 0.56 | 0.40 | 0.30 | 0.30 | 0.13 | 0.11 | 0.09 | 0.09 | | 2000 | 0.73 | 0.50 | 0.36 | 0.36 | 0.15 | 0.13 | 0.11 | 0.10 | | 2200 | 0.95 | 0.63 | 0.44 | 0.44 | 0.18 | 0.15 | 0.12 | 0.12 | | 2400 | | | | | 0.21 | 0.18 | 0.15 | 0.14 | | 2600 | | | | | 0.24 | 0.21 | 0.18 | 0.17 | | 2800 | | | | | 0.27 | 0.24 | 0.21 | 0.20 | | 3000 | | | | | 0.32 | 0.29 | 0.25 | 0.25 | | 3200 | | | | | 0.41 | 0.37 | 0.32 | 0.31 | | 3400 | | | | | 0.50 | 0.45 | 0.39 | 0.37 | | 3600 | | | | | 0.61 | 0.54 | 0.48 | 0.44 | #### **CEILING DIFFUSER AIR THROW DATA** | Air Volume - cfm | ¹ Effective | Throw - ft. | Air Volume - cfm | ¹ Effective | Throw - ft. | |------------------|------------------------|-------------|------------------|------------------------|-------------| | Model | RTD9-65S | FD9-65S | Model | RTD11-95S | FD11-95S | | 800 | 10 - 17 | 14 - 18 | 2600 | 24 - 29 | 19 - 24 | | 1000 | 10 - 17 | 15 - 20 | 2800 | 25 - 30 | 20 - 28 | | 1200 | 11 - 18 | 16 - 22 | 3000 | 27 - 33 | 21 - 29 | | 1400 | 12 - 19 | 17 - 24 | 3200 | 28 - 35 | 22 - 29 | | 1600 | 12 - 20 | 18 - 25 | 3400 | 30 - 37 | 22 - 30 | | 1800 | 13 - 21 | 20 - 28 | 3600 | 25 - 33 | 22 - 24 | | 2000 | 14 - 23 | 21 - 29 | | | | | 2200 | 16 - 25 | 22 - 30 | - | | | ¹ Effective throw based on terminal velocities of 75 ft. per minute. # TABLE 5 DRIVE COMPONENT MANUFACTURER'S NUMBERS | | | | DRIVE COMPONEN | NT PART NUMBERS | | | |-----------|-------------|----------|----------------|-----------------|----------|-----------| | Drive No. | Motor | Pulley | Blowe | r Pulley | Вє | elts | | | Browning | OEM | Browning | OEM | Browning | OEM | | Z01 | 1VP34 X 7/8 | 31K6901 | AK54 X 5/8 | 100244-30 | A40 | 100245-17 | | Z02 | 1VP34 X 7/8 | 31K6901 | AK46 X 5/8 | 100244-31 | A39 | 100245-16 | | Z03 | 1VP34 X 7/8 | 31K6901 | AK41 X 5/8 | 100244-28 | A39 | 100245-16 | | Z04 | 1VP34 X 7/8 | 31K6901 | AK39 X 5/8 | 100244-32 | A38 | 100245-15 | | Z05 | 1VP44 X 7/8 | P-8-1488 | AK49 X 5/8 | 100244-26 | A41 | 100245-18 | | ZAA02 | 1VP40 X 7/8 | 79J03 | BK80H | 100788-03 | A53 | 100245-40 | | ZAA03 | 1VP40 X 7/8 | 79J03 | AK59 X 1 | 31K68 | A50 | 100245-29 | | ZAA04 | 1VP44 X 7/8 | P-8-1488 | AK59 X 1 | 31K68 | AX51 | 13H01 | # TABLE 6 MINIMUM AIRFLOW ZC UNITS WITH ELECTRIC HEAT | kW | CFM - Downflow and Horizontal | | | | | | |------|-------------------------------|----------|--|--|--|--| | KVV | 036-060 | 072, 074 | | | | | | 5 | 960 | NA | | | | | | 7.5 | 960 | 1500 | | | | | | 10 | 960 | 1500 | | | | | | 15 | 960 | 1500 | | | | | | 22.5 | 1280 | 1500 | | | | | | 30 | NA | 2100 | | | | | ^{*}Units with electric heat (5-30kW) can operate up to 1.6" w.g. maximum static pressure ## **Cooling Start-Up** # **▲** IMPORTANT This unit is equipped with a crankcase heater. Make sure heater is energized 24 hours before unit start-up to prevent compressor damage as a result of slugging. #### **A-Operation** 1 - Initiate first and second stage cooling demands according to instructions provided with thermostat. See TABLE 7 for operation. **NOTE -** ZGD/ZCD 074 units are equipped with two-stage compressors. - 2 Units contain one refrigerant circuit or stage. - 3 Unit is charged with R454B refrigerant. See unit rating plate for correct amount of charge. Refer to Refrigerant Charge and Check section for proper method to check refrigerant charge. TABLE 7 COOLING OPERATION | T'Stat Demand | Energiz | ed | |-----------------|---------------------------------------|---------------| | 024-060 No Eco | nomizer or Outdoor Air Uns | uitable | | Y1 | Compressor | Condenser Fan | | Y2 | Compressor | Condenser Fan | | 024-060 Unit Eq | uipped with an Economizer | | | Y1 | Economizer | NA | | Y2 | Economizer + Compressor | Condenser Fan | | 074 No Econom | izer or Outdoor Air Unsuitab | ole | | Y1 | Compressor Low Speed* | Condenser Fan | | Y2 | Compressor High Speed** | Condenser Fan | | 074 Unit Equipp | ed with an Economizer | | | Y1 | Economizer | NA | | Y2 | Economizer + Compressor
Low Speed* | Condenser Fan | ^{*67%} of full capacity #### **B-Three Phase Scroll Compressor Voltage Phasing** Three phase scroll compressors must be phased sequentially to ensure correct compressor and blower rotation and operation. Compressor and blower are wired in phase at the factory. Power wires are color-coded as follows: line 1-red, line 2-yellow, line 3-blue. - 1 Observe suction and discharge pressures and blower rotation on unit start-up. - 2 Suction pressure must drop, discharge pressure must rise and blower rotation must match rotation marking. If pressure differential is not observed or blower rotation is not correct: - 3 Disconnect all remote electrical power supplies. - 4 Reverse any two field-installed wires connected to the line side of K1 contactor. Do not reverse wires at blower contactor. - 5 Make sure the connections are tight. Discharge and suction pressures should operate at their normal start-up ranges. Page 29 508704-01 5/2025 ^{**100%} of full capacity #### C-Refrigerant Charge and Check # WARNING - Do not exceed nameplate charge under any condition. This unit is factory charged and should require no further adjustment. If the system requires additional refrigerant, reclaim the charge, evacuate the system, and add required nameplate charge. #### **D-R454B Refrigerant** Units charged with R454B refrigerant operate at lower pressures than R410A. The expansion valve and liquid line dryer provided with the unit are approved for use with R454B. R454B refrigerant is stored in a gray cylinder. # **A** CAUTION Mineral oils are not compatible with R454B. If oil must be added, it must be a polyolester oil. Manifold gauge sets used with systems charged with R454B refrigerant must be capable of handling various system operating pressures. The gauges should be rated for use with pressures of 0-800 on the high side and a low side of 30" vacuum to 250 psi with dampened speed to 500 psi. Gauge hoses must be rated for use at up to 800 psi of pressure with a 4000 psi burst rating. | Refrigerant Charge R-454B | | | | | | | |---------------------------|----------------------|---------------------|--|--|--|--| | Unit | M _c (lbs) | M _c (kg) | | | | | | ZGD/ZCD 036 | 4.10 | 1.86 | | | | | | ZGD/ZCD 048 | 4.25 | 1.93 | | | | | | ZGD/ZCD 060 | 4.63 | 2.10 | | | | | | ZGD/ZCD 074 | 6.88 | 3.12 | | | | | In addition to conventional charging procedures, the following requirements shall be followed. - Ensure that contamination of different refrigerants does not occur when using charging equipment. Hoses or lines shall be as short as possible to minimize the amount of refrigerant contained in them. - Cylinders shall be kept in an appropriate position according to the instructions. - Ensure that the unit is earth grounded prior to charging the system with refrigerant. - Label the system when charging is complete (if not already). - Extreme care shall be taken not to overfill the unit. Prior to recharging the system, it shall be pressuretested with the appropriate purging gas. The system shall be leak-tested on completion of charging but prior to commissioning. A follow up leak test shall be carried out prior to leaving the site. When removing refrigerant from a system, either for servicing or decommissioning, it is recommended good practice that all refrigerants are removed safely. - When transferring refrigerant into cylinders, ensure that only appropriate refrigerant recovery cylinders are employed. Ensure that the correct number of cylinders for holding the total system charge is available. All cylinders to be used are designated for the recovered refrigerant and labelled for that
refrigerant (i. e. special cylinders for the recovery of refrigerant). Cylinders shall be complete with pressure-relief valve and associated shut-off valves in good working order. Empty recovery cylinders are evacuated and, if possible, cooled before recovery - The recovery equipment shall be in good working order with a set of instructions concerning the equipment that is at hand and shall be suitable for the recovery of all appropriate refrigerants including, when applicable, flammable refrigerants. In addition, a set of calibrated weighing scales shall be available and in good working order. Hoses shall be complete with leak-free disconnect couplings and in good condition. Before using the recovery machine, check that it is in satisfactory working order, has been properly maintained and that any associated electrical components are sealed to prevent ignition in the event of a refrigerant release. Consult manufacturer if in doubt. - The recovered refrigerant shall be returned to the refrigerant supplier in the correct recovery cylinder, and the relevant waste transfer note arranged. Do not mix refrigerants in recovery units and especially not in cylinders. - If compressors or compressor oils are to be removed, ensure that they have been evacuated to an acceptable level to make certain that flammable refrigerant does not remain within the lubricant. The evacuation process shall be carried out prior to returning the compressor to the suppliers. Only electric heating to the compressor body shall be employed to accelerate this process. When oil is drained from a system, it shall be carried out safely. **NOTE -** System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge must be weighed into the system. If weighing facilities are not available, or to check the charge, use the following procedure: 1 - Make sure outdoor coil is clean. Attach gauge manifolds and operate unit at full CFM in cooling mode with economizer disabled until system stabilizes (approximately five minutes). Make sure all outdoor air dampers are closed. - 2 Compare the normal operating pressures to the pressures obtained from the gauges. Check unit components if there are significant differences. - 3 Measure the outdoor ambient temperature and the suction pressure. Refer to the charging curve to determine a target liquid temperature. **NOTE -** Pressures are listed for sea level applications. - 4 Use the same thermometer to accurately measure the liquid temperature (in the outdoor section). - If measured liquid temperature is higher than the target liquid temperature, add refrigerant to the system. - If measured liquid temperature is lower than the target liquid temperature, recover some refrigerant from the system.. - 5 Add or remove charge in increments. Allow the system to stabilize each time refrigerant is added or removed. - 6 Continue the process until measured liquid temperature agrees with the target liquid temperature. Do not go below the target liquid temperature when adjusting charge. Note that suction pressure can change as charge is adjusted. - 7 Example: At 95°F outdoor ambient and a measured suction pressure of 130psig for the 036 model, the target liquid temperature is 100°F. For a measured liquid temperature of 106°F, add charge in increments until measured liquid temperature agrees with the target liquid temperature. TABLE 8 ZGD/ZCD036 NORMAL OPERATING PRESSURES - ALL-ALUMINUM COIL | | Outdoor Coil Entering Air Temperature | | | | | | | | | | | | |----------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | 65 | 5°F 75°F | | °F | 85 | °F | 95 | 5°F | 10 | 5°F | 11: | 5°F | | | Suct
(psig) | Disc
(psig) | | | 102 | 213 | 103 | 249 | 106 | 289 | 110 | 334 | 115 | 382 | 122 | 435 | | | 114 | 216 | 115 | 252 | 118 | 293 | 121 | 337 | 127 | 386 | 134 | 439 | | | 134 | 221 | 135 | 258 | 137 | 299 | 141 | 345 | 146 | 394 | 153 | 448 | | | 150 | 227 | 151 | 265 | 153 | 306 | 156 | 353 | 162 | 403 | 168 | 457 | | TABLE 9 ZGD/ZCD048 NORMAL OPERATING PRESSURES - ALL-ALUMINUM COIL | | Outdoor Coil Entering Air Temperature | | | | | | | | | | | |----------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 65 | °F | 75°F | | 85 | 85°F | | 95°F | | 5°F | 115°F | | | Suct
(psig) | Disc
(psig) | | 104 | 228 | 107 | 266 | 110 | 307 | 113 | 353 | 117 | 402 | 120 | 455 | | 110 | 230 | 114 | 268 | 118 | 310 | 122 | 357 | 126 | 407 | 131 | 461 | | 121 | 234 | 127 | 274 | 132 | 318 | 138 | 365 | 144 | 417 | 150 | 472 | | 130 | 239 | 137 | 280 | 144 | 325 | 151 | 375 | 159 | 428 | 166 | 485 | TABLE 10 ZGD/ZCD060 NORMAL OPERATING PRESSURES - ALL-ALUMINUM COIL | | Outdoor Coil Entering Air Temperature | | | | | | | | | | | |----------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 65 | 65°F 75°F 85°F 95°F | | 75°F | | 75°F | | °F | 10 | 5°F | 119 | 5°F | | Suct
(psig) | Disc
(psig) | | 101 | 235 | 102 | 272 | 104 | 314 | 105 | 360 | 106 | 411 | 107 | 466 | | 108 | 241 | 111 | 279 | 113 | 321 | 115 | 368 | 116 | 419 | 118 | 475 | | 123 | 250 | 127 | 289 | 130 | 332 | 133 | 380 | 136 | 433 | 138 | 490 | | 138 | 255 | 142 | 295 | 146 | 340 | 151 | 389 | 154 | 443 | 158 | 501 | Page 31 508704-01 5/2025 TABLE 11 ZGD/ZCD074 NORMAL OPERATING PRESSURES - ALL-ALUMINUM COIL | | Outdoor Coil Entering Air Temperature | | | | | | | | | | | | | | |----------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|-------|--| | 65 | °F | 75°F | | 75°F | | 75°F | | 75°F 85°F 95°F | | °F | 105°F | | 115°F | | | Suct
(psig) | Disc
(psig) | | | | | 102 | 241 | 104 | 279 | 106 | 323 | 108 | 373 | 109 | 428 | 110 | 489 | | | | | 109 | 244 | 111 | 283 | 114 | 327 | 116 | 377 | 118 | 433 | 120 | 495 | | | | | 123 | 251 | 127 | 291 | 131 | 336 | 134 | 388 | 137 | 445 | 140 | 508 | | | | | 138 | 261 | 143 | 302 | 148 | 348 | 153 | 401 | 157 | 459 | 160 | 523 | | | | #### ZGD/ZCD036 CHARGING CURVE - ALL-ALUMINUM COIL #### ZGD/ZCD048 CHARGING CURVE - ALL-ALUMINUM COIL #### ZGD/ZCD060 CHARGING CURVE - ALL-ALUMINUM COIL #### ZGD/ZCD074 CHARGING CURVE - ALL-ALUMINUM COIL Page 33 508704-01 5/2025 #### **E-Compressor Controls** See unit wiring diagram to determine which controls are used on each unit. Optional controls are identified on wiring diagrams by arrows at junction points. 1 - High Pressure Switch (S4) The high pressure switch is an auto-reset SPST N.C. switch which opens on a pressure rise. S4 is located in the compressor discharge line and is connected to the CMC1 board. When discharge pressure rises to 640±10psig (4412±69kPa), indicating a problem with the system, the switch opens. The respective compressor is de-energized but the economizer can continue to operate. Autoreset switches close at 475+20psig (3275±138kPa). 2 - Low Pressure Switch (S87) The compressor circuit is protected by a loss of charge switch. Switch opens at 40 psig + 5 psig (276 + 34 kPa) and automatically resets at 90 psig + 5 psig (621 kPa + 34 kPa). 3 - Compressor Monitoring (CMC1). The unit is equipped with a CMC1 control board which has the combined function of anti-short cycle timed off control and high- and low-pressure switch system control. Inputs will include cooling commands and pressure controls. Integral features include: - · Led diagnostic indicators. - High- and low-pressure switch monitoring, with 5-strike lockout. The board uses two LEDs for diagnostics. The LEDs flash a specific sequence according to the diagnosis (TABLE 12) | TABLE 12 | | | | | | | | |-------------------------------------|---------------|-------------------------------|--|--|--|--|--| | CMC1 Control Board Diagnostic LED's | | | | | | | | | DS2 Green | DS1 Red | Condition | | | | | | | OFF | OFF | Power Problem | | | | | | | Simultaneous Slow Fla | ısh | Normal Operation | | | | | | | Alternating Slow Flash | | 5-min. anti-short cycle delay | | | | | | | Fa | ault and Lock | cout Codes | | | | | | | OFF | Slow Flash | Loss of Charge Fault | | | | | | | OFF ON | | Loss of Charge Fault | | | | | | | Slow (Flash) OFF | | High Pressure Fault | | | | | | | ON OFF | | High Pressure Lockout | | | | | | #### **Refrigerant Leak Detection System** This unit is equipped with a Refrigerant Leak Detection System. The system consists of the RDS Non-Communicating Blower Control Board (RDSC) in the control compartment and a R454B Refrigerant Sensor near the coil. The Modes of Operation for the RDS Non-Communicating Blower Control Board are Initializing, Normal, Leak Detected, and Fault. #### **MODES OF OPERATION** #### Initializing The RDS Non-Communicating Blower Control Board is establishing connection with the refrigerant detection sensor and sensor is "warming up". #### **Normal** The HVAC system is functioning normally, i.e., responding to thermostat demand signals. The RDS Non-Communicating Blower Control Board has not detected a refrigerant leak. #### Leak Detected (Mitigation) When the RDS Non-Communicating Blower Control Board detects a refrigerant leak: - 1 The RDS Non-Communicating Blower Control Board shuts off the (R) output (24VAC power) to the thermostat, which de-energizes the outdoor unit compressor and heat sources, such as gas and/or electric strip heat. No heating or cooling demands will be met. - 2 The RDS Non-Communicating Blower Control Board activates the blower ventilation speed
(G). The blower purges refrigerant from the cabinet, plenum, and ductwork. - 3 After the RDS Non-Communicating Blower Control Board determines the refrigerant levels are below the safety threshold, the blower will continue to function for an additional seven (7) minutes. - 4 After the blower sequence is complete, the HVAC system resumes normal operation. **NOTE -** The HVAC system may not maintain a cooling or heating setpoint if a significant leak exists. Any refrigerant leaks that remain unaddressed for an extended time may cause the HVAC system to shut down on a low refrigerant pressure limit condition. #### Fault/Service When a fault is detected within the RDS Non-Communicating Blower Control Board, the indoor blower engages and remains engaged at a constant output until the fault is cleared. #### **DIAGNOSTIC CODES / TROUBLESHOOTING** The RDS Non-Communicating Blower Control Board is equipped with a multicolor LED. The LED signals the operational state of the RDS Non-Communicating Blower Control Board. To review the operational states, refer to TABLE 13, LED Operational Modes / Troubleshooting, for details. Red diagnostic codes indicate a specific RDS Non-Communicating Blower Control Board issue. To determine the issue and possible troubleshooting actions, refer to TABLE 14, Red LED Diagnostic Codes / Troubleshooting. The RDS Non-Communicating Blower Control Board is equipped with a Test/Reset button. The Test button can be used to complete several functions, depending on the mode of operation of the RDS Non-Communicating Blower Control Board. TABLE 15 lists the functions of the Test button during each mode of operation. **TABLE 13** #### **LED Operational Modes / Troubleshooting** | Operating Mode | LED Status | Action | | | |-----------------|---|--|--|--| | Initializing | Flashing green | None | | | | Monitoring | Solid green* | None | | | | Mitigation | Flashing blue | Check coil tubes for leak. | | | | (Leak Detected) | riasiling blue | Repair the issue and restart the equipment. | | | | Fault / Service | Solid blue, interrupted by red flash code | Refer to table for troubleshooting guidance. | | | ^{*}Solid green interrupted by a blue flash indicates the mitigation process has previously occurred. TABLE 14 Red LED Diagnostic Codes / Troubleshooting | Red Wink | Applies to
Individual
Sensor(s) | Issue | Action | | |----------|---------------------------------------|---------------------------------------|---|--| | 1 | Yes | RDS Sensor Fault | Replace sensor | | | 2 | No | VFD alarm / Drain pan overflow | Check VFD for alarms, remedy alarms present. If float switch is installed, verify proper switch mounting location, depth in pan, unobstructed condensate drain line; correct as needed. | | | 3 | Yes | Incompatible sensor installed | Replace sensor | | | 4 | Yes | Sensor communication issue | Check sensor connection. Ensure connection is clean and tight | | | 5 | No | R-input not available | Check for 24VAC power connected to thermostat R terminal on the RDSC. 24VAC power should only be provided at A194-R quick connection for the RDSC to function. | | | 6 | No | Invalid configuration of sensor count | Not applicable | | # TABLE 15 Test Button Functions | Operation Mode | Press the Test button to | Press | Action | |-------------------------------|---|-------|--| | Monitoring | Trigger a leak detection response. Verify all equipment is wired correctly into the RDSC | Short | Clear purge-counter if prior mitigation has occured; test mitigation. | | | (after installation). | Long | Reset control. | | Mitigating
(Leak Detected) | Reset the RDSC to a normal mode of operation after a previous leak has been detected and purged from the HVAC system. | Short | If testing mitigation, end test. | | Fault/Service | Reset the RDSC after troubleshooting and resolving a fault condition. If the fault is not | Short | Reevaluate fault condition - if cleared, return to monitoring, otherwise update indicator. | | | resolved, the RDSC will enter the Fault mode again. | Long | Reset control. | #### **RDS SENSORS** Units are equipped with factory-installed RDS Sensors located on different points on the unit. The RDS sensors provide the Unit Controller with continuous readings for leaked refrigerant concentration levels and sensor health status (Good or Fault). These readings are used to modify unit operation to disperse the leaked refrigerant and to remove possible ignition sources. In addition, the Unit Controller uses these readings to initiate alarms to alert the operator of a refrigerant leak or faulty sensor(s). Each sensor must be specifically placed for proper unit operation and to initiate valid alarms. To identify sensor locations see. See TABLE 17 for a list of alarms. #### TABLE 16 #### **RDS Sensor Figures** | Model | Qty. | Туре | Figure | |----------------|----------|---------------|-----------| | ZGD/ZCD036-074 | 1 sensor | INDOOR SENSOR | FIGURE 20 | #### **TABLE 17 - RDS Alarms** | Alarm | Alarm description | RDS Sensor Location | |-------|---|--| | 257 | Refrigerant leak sensor fault in the Indoor section (sensor #1) | Indoor compartment | | 258 | Refrigerant leak sensor fault in
the control panel/compressor
section (sensor #2) | "Control/Compressor
or
Compressor compartment" | Page 35 508704-01 5/2025 FIGURE 20 #### **SENSOR MAINTENANCE** It is recommended to check the state of the sensor every 6 months, at the beginning of each cooling and heating season. - · Check that the sensor cable is in good condition. - Ensure that the sensor opening is clear and free of debris. - DO NOT use abrasive cleaning solutions or detergents to clean sensor opening. - DO NOT use flammable compressed air solutions to clean the sensor opening. - DO NOT vacuum sensor inlet opening, as this could cause damage to the sensor internal components. - Replace sensor if the opening is not clean or free of debris. **NOTE -** When cleaning the evaporator coil, remove the sensor from the coil. Recommended method is removal of bracket with sensor attached. See FIGURE 21 for an example of a clear, unobstructed sensor inlet. FIGURE 21 #### Gas Heat Start-Up (Gas Units) #### FOR YOUR SAFETY READ BEFORE LIGHTING # WARNING Electric shock hazard. Can cause injury or death. Do not use this unit if any part has been under water. Immediately call a qualified service technician to inspect the unit and to replace any part of the control system and any gas control which has been under water. # WARNING Danger of explosion. Can cause injury or product or property damage. If overheating occurs or if gas supply fails to shut off, shut off the manual gas valve to the appliance before shutting off electrical supply. # WARNING Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies. # **▲** WARNING #### **SMOKE POTENTIAL** The heat exchanger in this unit could be a source of smoke on initial firing. Take precautions with respect to building occupants and property. Vent initial supply air outside when possible. BEFORE LIGHTING smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. The gas valve may be equipped with either a gas control lever or gas control knob. Use only your hand to push the lever or turn the gas control knob. Never use tools. If the lever will not move or the knob will not push in or turn by hand, do not try to repair it. Call a qualified service technician. Force or attempted repair may result in a fire or explosion. # **A WARNING** Danger of explosion. Can cause injury or death. Do not attempt to light manually. Unit has a direct spark ignition system. This unit is equipped with an automatic spark ignition system. There is no pilot. In case of a safety shutdown, move thermostat switch to **OFF** and return the thermostat switch to **HEAT** to reset ignition control. #### A-Placing Unit In Operation # **A WARNING** Danger of explosion and fire. Can cause injury or product or property damage. You must follow these instructions exactly. #### Gas Valve Operation (FIGURE 22 and FIGURE 23) #### FIGURE 22 #### FIGURE 23 - 1 Set thermostat to lowest setting. - 2 Turn off all electrical power to appliance. - 3 This appliance is equipped with an ignition device which automatically lights the burner. Do not try to light the burner by hand. - 4 Open or remove the heat section access panel. Page 37 508704-01 5/2025 5 - Resideo VR8215 Gas Valve - Switch gas valve lever to **OFF**. See FIGURE 22. White Rodgers 36J54 Gas Valve - Turn knob on gas valve clockwise to **OFF**. Do not force. See FIGURE 23. - 6 Wait five (5) minutes to clear out any gas. If you then smell gas, **STOP!** Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions. If you do not smell gas, go to the next step. - 7 Resideo VR8215 Gas Valve Switch gas valve lever to **ON**. See FIGURE 22. White Rodgers 36J54 Gas Valve - Turn knob on gas valve counterclockwise to **ON**. Do not force. See FIGURE 23. - 8 Close or replace the heat section access panel. - 9 Turn on all electrical power to appliance. - 10 -Set thermostat to desired setting. **NOTE -** When unit is initially started,
steps 1 through 9 may need to be repeated to purge air from gas line. - 11 The ignition sequence will start. - 12 -If the furnace does not light the first time (gas line not fully purged), it will attempt up to two more ignitions before locking out. - 13 -If lockout occurs, repeat steps 1 through 10. - 14 -If the appliance will not operate, follow the instructions "Turning Off Gas to Appliance" and call your service technician or gas supplier. #### **Turning Off Gas to Unit** - 1 If using an electromechanical thermostat, set to the lowest setting. - 2 Before performing any service, turn off all electrical power to the appliance. - 3 Open or remove the heat section access panel. - 4 Resideo VR8215 Gas Valve Switch gas valve lever to **OFF**. White Rodgers 36J54 Gas Valve - Turn knob on gas valve clockwise to **OFF**. Do not force. 5 - Close or replace the heat section access panel. # **A WARNING** Danger of explosion. Can cause injury or death. Do not attempt to light manually. Unit has a direct spark ignition system. #### **Heating Operation and Adjustments** #### (Gas Units) #### **A-Heating Sequence of Operation** On a heating demand the combustion air inducer starts immediately. Combustion air pressure switch proves inducer operation. After a 30-second pre-purge, power is allowed to ignition control. Switch is factory set and requires no adjustment. Spark ignitor energizes and gas valve solenoid opens. Spark ignites gas, ignition sensor proves the flame and combustion continues. If flame is not detected after first ignition trial, ignition control will repeat steps 3 and 4 two more times before locking out the gas valve. For troubleshooting purposes, an ignition attempt after lock out may be re-established manually. Move thermostat to **OFF** and return thermostat switch to **HEAT** position. #### **B-Ignition Control Diagnostic LED's** TABLE 18 IGNITION CONTROL HEARTBEAT LED STATUS | LED Flashes | Indicates | |-------------|---| | Slow | Normal operation. No call for heat. | | Fast | Normal operation. Call for heat. | | Steady Off | Internal control fault OR no power to control OR Gas Valve Relay Fault. | | Steady On | Control internal failure. | | 2 | Lockout. Failed to detect or sustain flame. | | 3 | Prove switch open or closed or rollout switch open. | | 4 | Limit switch is open and/or high limit has opened three times. | | 5 | Flame sensed but gas valve solenoid not energized. | #### **C-Limit Controls** Limit controls are factory-set and are not adjustable. The primary limit is located to the right of the combustion air inducer. See FIGURE 29. If the primary limit trips three times in the same heating cycle, heating operation will de-energize. Heating will automatically restart after one hour if a heating demand is present. To initiate heating during the one hour timed-off interval, reset the thermostat. #### **D-Heating Adjustment** Main burners are factory-set and do not require adjustment. The following manifold pressures are listed on the gas valve. Natural Gas Units - Low Fire - 2.0" w.c. Natural Gas Units - High Fire - 3.5" w.c. LP Gas Units - Low Fire - 5.9" w.c. LP Gas Units - High Fire - 10.5" w.c. #### **Electric Heat Start-Up (ZCD Units)** Optional electric heat will stage on and cycle with thermostat demand. See electric heat wiring diagram on unit for sequence of operation. #### **Preventative Maintenance / Repair** # IMPORTANT MAINTENANCE / REPAIR SAFETY INSTRUCTIONS Prior to beginning work on systems containing FLAMMABLE REFRIGERANTS, safety checks are necessary to ensure that the risk of ignition is minimized. Work shall be undertaken under a controlled procedure to minimize the risk of a flammable gas or vapor being present while the work is being performed. All maintenance staff and others working in the local area shall be instructed on the nature of work being carried out. Work in confined spaces shall be avoided. The area shall be checked with an appropriate refrigerant detector prior to and during work, to ensure the technician is aware of potentially toxic or flammable atmospheres. Ensure that the leak detection equipment being used is suitable for use with all applicable refrigerants, i.e. non-sparking, adequately sealed or intrinsically safe. If any hot work is to be conducted on the refrigerating equipment or any associated parts, appropriate fire extinguishing equipment shall be available to hand. Have a dry powder or CO2 fire extinguisher adjacent to the charging area. No person carrying out work in relation to a REFRIGERATING SYSTEM which involves exposing any pipe work shall use any sources of ignition in such a manner that it may lead to the risk of fire or explosion. All possible ignition sources, including cigarette smoking, should be kept sufficiently far away from the site of installation, repairing, removing and disposal, during which refrigerant can possibly be released to the surrounding space. Prior to work taking place, the area around the equipment is to be surveyed to make sure that there are no flammable hazards or ignition risks. "No Smoking" signs shall be displayed. Where electrical components are being changed, they shall be fit for the purpose and to the correct specification. At all times, the manufacturer's maintenance and service guidelines shall be followed. If in doubt, consult the manufacturer's technical department for assistance. Repair and maintenance to electrical components shall include initial safety checks and component inspection procedures. If a fault exists that could compromise safety, then no electrical supply shall be connected to the circuit until it is satisfactorily dealt with. If the fault cannot be corrected immediately but it is necessary to continue operation, an adequate temporary solution shall be used. This shall be reported to the owner of the equipment so all parties are advised. Initial safety checks shall include: - that capacitors are discharged: this shall be done in a safe manner to avoid possibility of sparking - that no live electrical components and wiring are exposed while charging, recovering or purging the system - that there is continuity of earth bonding The following checks shall be applied to installations using FLAMMABLE REFRIGERANTS: the actual REFRIGERANT CHARGE is in accordance with the room size within which the refrigerant containing parts are installed; - the ventilation machinery and outlets are operating adequately and are not obstructed; - if an indirect refrigerating circuit is being used, the secondary circuit shall be checked for the presence of refrigerant; - marking to the equipment continues to be visible and legible. Markings and signs that are illegible shall be corrected; - refrigerating pipe or components are installed in a position where they are unlikely to be exposed to any substance which may corrode refrigerant containing components, unless the components are constructed of materials which are inherently resistant to being corroded or are suitably protected against being so corroded. During repairs to sealed electrical components, the components shall be replaced. Replacement parts shall be in accordance with the manufacturer's specifications. During repairs to intrinsically safe components, the components must be replaced. Replace components only with parts specified by the manufacturer. Other parts may result in the ignition of refrigerant in the atmosphere from a leak. The unit should be inspected once a year by a qualified service technician. # CAUTION Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing. #### **A-Filters** Units are equipped with temporary filters which must be replaced prior to building occupation. See TABLE 19 for correct filter size. Refer to local codes or appropriate jurisdiction for approved filters. TABLE 19 UNIT FILTERS | Unit | Filter Size - Inches (mm) | |-----------------|----------------------------------| | ZCD/ZGD036, 048 | 4 - 14 X 20 X 2 (352 X 508 X 51) | | ZCD/ZGD060 | 2 - 16 X 20 X 2 (406 X 508 X 51) | | ZCD/ZGD074 | 2 - 20 X 20 X 2 (508 X 508 X 51) | To change filters, open filter access panel on back side of unit. See FIGURE 24. Lift filter stop to remove filters. See FIGURE 25. # **WARNING** Units are shipped from the factory with temporary filters. Replace filters before building is occupied. Damage to unit could result if filters are not replaced with approved filters. Refer to appropriate codes. Approved filters should be checked monthly and replaced when necessary. Take note of air flow direction marking on filter frame when reinstalling filters. See FIGURE 25. **NOTE -** Filters must be U.L.C. certified or equivalent for use in Canada. FIGURE 24 FIGURE 25 #### **B-Lubrication** All motors are lubricated at the factory. No further lubrication is required. #### C-Burners (Gas Units) Periodically examine burner flames for proper appearance during the heating season. Before each heating season examine the burners for any deposits or blockage which may have occurred. Clean burners as follows: - 1 Turn off both electrical power and gas supply to unit. - 2 Remove burner compartment access panel. - 3 Remove top burner box panel. - 4 Remove screws securing burners to burner support and lift the individual burners or the entire burner assembly from the orifices. See FIGURE 26. Clean as necessary. FIGURE 26 5 - Locate the ignitor under the right burner. Check ignitor spark gap with appropriately sized twist drills or feeler gauges. See FIGURE 27. FIGURE 27 6 - Replace burners and screws securing burner. See FIGURE 28. Danger of explosion. Can cause injury or death. Do not overtighten main burner mounting screws. Snug tighten only. - 7 Replace access panel. - 8 Restore electrical power and gas supply. Follow lighting instructions attached to unit and use inspection
port in access panel to check flame. FIGURE 28 #### **D-Combustion Air Inducer (Gas Units)** A combustion air proving switch checks combustion air inducer operation before allowing power to the gas controller. Gas controller will not operate if inducer is obstructed. Under normal operating conditions, the combustion air inducer wheel should be checked and cleaned prior to the heating season. However, it should be examined periodically during the heating season to establish an ideal cleaning schedule. Clean combustion air inducer as follows: - 1 Shut off power supply and gas to unit. - 2 Remove the access panel located on the right side of the outdoor section under the control box. - 3 Remove and retain screws securing combustion air inducer to flue box. Remove vent connector. See FIGURE 29. - 4 Clean inducer wheel blades with a small brush and wipe off any dust from housing. Take care not to damage exposed fan blades. Clean accumulated dust from front of flue box cover. - 5 Return combustion air inducer motor and vent connector to original location and secure with retained screws. It is recommended that gaskets be replaced during reassembly. - 6 Replace the access panel. - 7 Clean combustion air inlet louvers on heat access panel using a small brush. FIGURE 29 #### E-Flue Box (Gas Units) Remove flue box cover only when necessary for equipment repair. Clean inside of flue box cover and heat exchanger tubes with a wire brush when flue box cover has to be removed. Install a new flue box cover gasket and replace cover. Make sure edges around flue box cover are tightly sealed. #### F-Evaporator Coil Inspect and clean coil at beginning of each cooling season. Clean the all-aluminum coil by spraying the coil steadily and uniformly from top to bottom. Do not exceed 900 psi or a 45 degree angle; nozzle must be at least 12 inches from the coil face. Take care not to fracture the braze between the fins and refrigerant tubes. Reduce pressure and work cautiously to prevent damage, taking care not to get insulation, filters and return air ducts wet. #### **G-Condenser Coil** Clean condenser coil annually with water and inspect monthly during the cooling season. Clean the all-aluminum coil by spraying the coil steadily and uniformly from top to bottom. Do not exceed 900 psi or a 45 degree angle; nozzle must be at least 12 inches from the coil face. Take care not to fracture the braze between the fins and refrigerant tubes. Reduce pressure and work cautiously to prevent damage. #### **H-Compressor** If Interlink compressor replacement is necessary, call 1-800-4-LENNOX (1-800-453-6669). # **▲** IMPORTANT Some scroll compressors have an internal vacuum protector that will unload scrolls when suction pressure goes below 20 psig. A hissing sound will be heard when the compressor is running unloaded. Protector will reset when low pressure in system rises above 40 psig. DO NOT REPLACE COMPRESSOR. #### J-Supply Air Blower Wheel Annually inspect supply air blower wheel for accumulated dirt or dust. Turn off power before attempting to remove access panel or to clean blower wheel. #### K-Replacement Fuses See the following tables for the proper replacement fuse sizes. | | ELECTRIC HEAT REPLA | ACEMENT | FUSES | | |----|---------------------|---------|-------|------| | | Electric Heat | Othe | Rati | ng | | | Electric neat | Qty. | Amp | Volt | | 1 | ZIEH0050AN1P | 2 | 30A | 250 | | 2 | ZIEH0075AN1P | 2 | 40A | 250 | | 3 | ZIEH0100AN1P | 2 | 20A | 250 | | 4 | ZIEH0150AN1P | 4 | 40A | 250 | | 5 | ZIEH0225AN1P | 6 | 40A | 250 | | 6 | ZIEH0050AN1Y | 3 | 20A | 250 | | 7 | ZIEH0075AN1Y | 3 | 25A | 250 | | 8 | ZIEH0100AN1Y | 3 | 35A | 250 | | 9 | ZIEH0150AN1Y | 3 | 50A | 250 | | 10 | ZIEH0225AN1Y | 6 | 40A | 250 | | 11 | ZIEH0050AN1G | 3 | 15A | 600 | | 12 | ZIEH0075AN1G | 3 | 15A | 600 | | 13 | ZIEH0100AN1G | 3 | 20A | 600 | | 14 | ZIEH0150AN1G | 3 | 25A | 600 | | 15 | ZIEH0225AN1G | 3 | 35A | 600 | | 16 | ZIEH0050AN1J | 3 | 15A | 600 | | 17 | ZIEH0075AN1J | 3 | 15A | 600 | | 18 | ZIEH0100AN1J | 3 | 15A | 600 | | 19 | ZIEH0150AN1J | 3 | 20A | 600 | | 20 | ZIEH0225AN1J | 3 | 30A | 600 | | 21 | ZIEH0300A-1Y | 6 | 60A | 250 | | 22 | ZIEH0300A-1G | 3 | 50A | 600 | | 23 | ZIEH0300A-1J | 3 | 40A | 600 | #### **TABLE 20** | | | | | | | | ZCD | 036 | | | | | | | | | | | |----------------|-----------------|--------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|--------------|-------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | e | | | | 5 I | κW | | | | | | | 7.5 | kW | | | | | | Unit Voltage | | 208/2
1 | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | 230V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | W /
P.E. | / O
P.E. | W /
P.E. | W
/ O
P.E. | W /
P.E. | W
/ O
P.E. | W /
P.E. | W
/ O
P.E. | | Diagram
Key | Class | Blower
HP | | | | | | | | An | nps | | | | | | | | | F4 | RK or K | 0.75HP | 40 | 35 | - | - | - | - | - | - | 40 | 35 | - | - | - | - | - | - | | F4 | RK or K | 1.0 HP | - | - | 25 | 25 | 15 | 15 | 15 | 15 | - | - | 25 | 25 | 15 | 15 | 15 | 15 | #### **TABLE 21** | | | | | | | ZCI | 036 (| contin | ued | | | | | | | | | | |----------------|-----------------|--------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | е | | | | 10 | kW | | | | | | | 15 | kW | | | | | | Unit Voltage | | 208/2
1 | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | Diagram
Key | Class | Blower
HP | | | | | | | | An | nps | | | | | | | | | F4 | RK or K | 0.75HP | 40 | 35 | - | - | - | - | - | - | 40 | 35 | - | - | - | - | - | - | | F4 | RK or K | 1.0 HP | - | - | 25 | 25 | 15 | 15 | 15 | 15 | - | - | 25 | 25 | 15 | 15 | 15 | 15 | #### **TABLE 22** | | | | | | | | ZCD | 048 | | | | | | | | | | | |----------------|--|--------------|-------------|------------------|-------------|-------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|-------------| | Ele | ectric Heat Siz | e | | | | 5 I | κW | | | | | | | 7.5 | kW | | | | | | Unit Voltage | | 208/2
1 | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | W /
P.E. | / O
P.E. | W /
P.E. | W
/ O
P.E. | W /
P.E. | / O
P.E. | | Diagram
Key | Class | Blower
HP | | | | | | | | An | nps | | | | | | | | | F4 | ''' | | | | | | | | | - | 50 | 50 | - | - | - | - | - | - | | F4 | RK or K | 1.0 HP | - | - | 35 | 30 | 15 | 15 | 15 | 15 | - | - | 35 | 30 | 15 | 15 | 15 | 15 | #### **TABLE 23** | | | | | | | ZCI | 048 (| contin | ued | | | | | | | | | | |----------------|-----------------|--------------|--------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | е | | | | 10 | kW | | | | | | | 15 | kW | | | | | | Unit Voltage | | 208/2
1 I | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | 30V -
Ph | 208/2
3 | | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | Diagram
Key | Class | Blower
HP | | | | | | | | An | nps | | | | | | | | | F4 | RK or K | 1.5HP | 50 | 50 | - | - | - | - | - | - | 50 | 50 | - | - | - | - | - | - | | F4 | RK or K | 1.0 HP | - | - | 35 | 30 | 15 | 15 | 15 | 15 | - | - | 35 | 30 | 15 | 15 | 15 | 15 | #### **TABLE 24** | | | | ZCD 048 (| continued | | | | | | | |-------------|----------------------|-----------|-----------|---------------|----------|---------------|----------|---------------|----------|---------------| | | Electric Heat Size | | | | | 22.5 | kW | | | | | | Unit Voltage | | 208/230 | V - 1 Ph | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3Ph | | F | Power Exhaust Option | | W / P.E. | W / O
P.E. | | Diagram Key | Class | Blower HP | | | | Am | nps | | | | | F4 | RK or K | 1.5HP | 50 | 50 | - | - | - | - | - | - | | F4 | RK or K | 1.0 HP | - | - | 35 | 30 | 15 | 15 | 15 | 15 | #### **TABLE 25** | | | | | | | | ZCD | 060 | | | | | | | | | | | |----------------|-----------------|--------------|--------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | е | | | | 5 k | κW | | | | | | | 7.5 | kW | | | | | | Unit Voltage | | 208/2
1 I | | | 230V -
Ph | |)V -
Ph | | 5V -
Ph | | 30V -
Ph | 208/2
3 | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | Diagram
Key | Class | Blower
HP | | | | | | | | An | nps | | | | | | | | | F4 | RK or K | 1.5HP | 60 | 60 | 45 | 40 | 20 | 15 | 15 | 15 | 60 | 60 | 45 | 40 | 20 | 15 | 15 | 15 | ## TABLE 26 | | | | | | | ZCE | 060 (| contin | ued | | | | | | | | | | |----------------|-----------------|--------------|--------------|------------------|-------------|------------------|-------------
-------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | е | | | | 10 | kW | | | | | | | 15 | kW | | | | | | Unit Voltage | | 208/2
1 I | | | 30V -
Ph | | 0V -
Ph | | 5V -
Ph | | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | W /
P.E. | W
/ O
P.E. | W /
P.E. | / O
P.E. | W /
P.E. | W
/ O
P.E. | | Diagram
Key | Class | Blower
HP | | | | | | | | An | nps | | | | | | | | | F4 | RK or K | 1.5HP | 60 | 60 | 45 | 40 | 20 | 15 | 15 | 15 | 60 | 60 | 45 | 40 | 20 | 15 | 15 | 15 | #### **TABLE 27** | | | | ZCD 060 (| continued | | | | | | | |-------------|----------------------|-----------|-----------|---------------|----------|---------------|----------|---------------|----------|---------------| | | Electric Heat Size | | | | | 22.5 | kW | | | | | | Unit Voltage | | 208/230 | V - 1 Ph | 208/230 | V - 3 Ph | 460V | - 3Ph | 575V | - 3Ph | | F | Power Exhaust Option | | W / P.E. | W / O
P.E. | | Diagram Key | Class | Blower HP | | | | An | ıps | | | | | F4 | RK or K | 1.5HP | 60 | 60 | 45 | 40 | 20 | 15 | 15 | 15 | #### **TABLE 28** | | | | | | | | ZCD | 074 | | | | | | | | | | | |----------------|-----------------|--------------|--------------|------------------|--------------|-------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | е | | | | 5 k | κW | | | | | | | 7.5 | kW | | | | | | Unit Voltage | | 208/2
1 I | 30V -
Ph | 208/2
3 I | 30V -
Ph | |)V -
Ph | 575
3F | 5V -
Ph | | 30V -
Ph | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | W /
P.E. | / O
P.E. | W /
P.E. | W
/ O
P.E. | | Diagram
Key | Class | Blower
HP | | | | | | | | Am | nps | | | | | | | | | F4 | RK or K | 2.0HP | - | - | 50 | 50 | 25 | 20 | 15 | 15 | - | - | 50 | 50 | 25 | 20 | 15 | 15 | #### **TABLE 29** | | | | | | | ZCE | 074 (| contin | ued | | | | | | | | | | |----------------|-----------------|--------------|--------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|--------------|------------------|-------------|------------------|-------------|------------------| | Ele | ectric Heat Siz | :e | | | | 10 | kW | | | | | | | 15 | kW | | | | | | Unit Voltage | | 208/2
1 I | | | 30V -
Ph | |)V -
Ph | | 5V -
Ph | | 230V -
Ph | 208/2
3 I | 30V -
Ph | |)V -
Ph | 575
3F | 5V -
Ph | | Powe | er Exhaust Op | tion | W /
P.E. | W
/ O
P.E. | Diagram
Key | Class | Blower
HP | | | | | | | | An | ıps | | | | | | | | | F4 | RK or K | 2.0HP | - | - | 50 | 50 | 25 | 20 | 15 | 15 | - | - | 50 | 50 | 25 | 20 | 15 | 15 | #### **TABLE 30** | ZCD 074 (continued |----------------------|---------|--------------|----------------------------|------------------|---------------|------------------|---------------|------------------|--------------------|------------------|--------------------|------------------|---------------|------------------|---------------|------------------|-------------|------------------| | Electric Heat Size | | | | 22.5 kW | | | | | | | 30 kW | | | | | | | | | Unit Voltage | | | 208/230V - 208/230V - 3 Ph | | 460V -
3Ph | | 575V -
3Ph | | 208/230V -
1 Ph | | 208/230V -
3 Ph | | 460V -
3Ph | | 575V -
3Ph | | | | | Power Exhaust Option | | | W /
P.E. | W
/ O
P.E. | Diagram
Key | Class | Blower
HP | Amps | | | | | | | | | | | | | | | | | F4 | RK or K | 2.0HP | - | - | 50 | 50 | 25 | 20 | 15 | 15 | - | - | 50 | 50 | 25 | 20 | 15 | 15 | #### **Decommissioning** Before carrying out this procedure, it is essential that the technician is completely familiar with the equipment and all its detail. It is recommended good practice that all refrigerants are recovered safely. Prior to the task being carried out, an oil and refrigerant sample shall be taken in case analysis is required prior to re-use of recovered refrigerant. It is essential that electrical power is available before starting decommissioning. - a) Become familiar with the equipment and its operation. - b) Isolate system electrically. - c) Before attempting the procedure, ensure that: - mechanical handling equipment is available, if required, for handling refrigerant cylinders; - all personal protective equipment is available and being used correctly; - the recovery process is supervised at all times by a competent person; - recovery equipment and cylinders conform to the appropriate standards. - d) Pump down refrigerant system, if possible. - e) If a vacuum is not possible, make a manifold so that refrigerant can be removed from various parts of the system. - f) Make sure that cylinder is situated on the scales before recovery takes place. - g) Start the recovery machine and operate in accordance with instructions. - h) Do not overfill cylinders (no more than 80% volume liquid charge). - i) Do not exceed the maximum working pressure of the cylinder, even temporarily. - j) When the cylinders have been filled correctly and the process completed, make sure that the cylinders and the equipment are removed from site promptly and all isolation valves on the equipment are closed off. - k) Recovered refrigerant shall not be charged into another REFRIGERATING SYSTEM unless it has been cleaned and checked. # **A IMPORTANT** Equipment shall be labelled stating that it has been decommissioned and emptied of refrigerant. The label shall be signed and dated. Ensure that there are labels on the equipment that state the flammability of the refrigerant used. ## **START-UP REPORT** | Job Name: | | | | Inspections and Checks | | | | | | | | | | | | | | |--|----------|---------------------------------------|-----------|--|---|----------|---|-------|----|----------|---------|----------------|----|----|--|--|--| | Store No | | Dam | age? | ١ | es No |) | R454 | В | | | | | | | | | | | Address: | | | | If ye | s, repo | orted to |): | | | | | | | | | | | | City: | | | - | | | | | | | | | | | | | | | | Start-Up Cont | ractor:_ | | | | Verify factory and field-installed accessories. | | | | | | | | | | | | | | Technician: | | | | | Check electrical connections. Tighten if necessary. | | | | | | | | | | | | | | Model No.: | | | | | | | Supply voltage: L1-L2L1-L3L2-L3 If unit contains a 208-230/240 volt transformer: | | | | | | | | | | | | Serial No.: | | | | | | | Check primary transformer tap □ | | | | | | | | | | | | RTU No.: | | | | | | | Transformer secondary voltage: | | | | | | | | | | | | Cooling Checks | | | | | | | | | | | | | | | | | | | Compressor | Rotation | n 🗆 A | mbient T | eturn <i>A</i> | ırn Air Temp Supply Air Temp | | | | | | | | | | | | | | Compressor Amps Compressor Volts | | | | | | | Pressures | | | enser Fa | CC | CC Heater Amps | | | | | | | L1 | L1 L2 L3 | | | L1-L2 L1-L3 L2 | | | 1. | Suct. | L1 | L2 | L3 | | L1 | | | | | | 1 | | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | | | 4 | - | | | | | - | Heating Checks - Electric | | | | | | | | | | | | | | | | | Pulley/Belt All
Set Screws T | | Return Air Temp.: Supply Air Temp.: | | | | | | | | | | | | | | | | | | | Limits Operate: □ | | | | | | | | | | | | | | | | | Nameplate Amps:Volts: Motor Amps Volts | | | | | | | Amps | | | | | | | | | | | | L1 L1-L2 | | | | | | | | L1 | L2 | 2 L3 | | L1 | L2 | L3 | | | | | L2 L1-L3 | | | | | | | 1 | | | | 10 | | | | | | | | L3 L2-L3
Heating Checks - Gas | | | | | | | 2 | | | | 11 | | | | | | | | | | 3 | | | | 12 | | | | | | | | | | | | | Fuel type: Nat. □ LP □ Inlet Pressure:in. w.c. | | | | | | | 4 | | | | 13 | | | | | | | | Return Air Temp.: Supply Air Temp.: | | | | | | | 5 | | | | 14 | | | | | | | | Altitude: Primary Limits Operate: | | | | | | | 6 | | | | 15 | | | | | | | | CO 9/ : | 1 | 7 | | | | 16 | | | | | | | | | | | | | CO ₂ %: | | M | anifold F | | 8 | | | | 17 | | | | | | | | | | Gas Valve | - | Manifold Pressure Low Fire High Fire | | | | | 9 | | | | 18 | | | | | | | | GV1 | | | | | | | | | | Accesso | ry Chec | ks | | | | | | | GV2 | | | | | | | | | F | ower Exh | | • | | | | | | | | 1 | 12 None □ | | | | | | | | | | | | | | | | | | | Economizer Operation | Min. Pos. ☐ Motor travel full open/close ☐ | | | | | | | | | | | | | |