

UNIT INFORMATION

Corp. 0803-L1 Revised 06-2022

KHA/KHB

2 /2.5/ 3 / 4 / 5 / 6 Ton

KHA/KHB SERIES

The KHA/KHB commercial heat pump is available in 2, 2.5, 3, 4, 5 and 6 ton capacities. The KHA/KHB024/074 refrigerant systems utilize one compressor, one reversing valve and other parts common to a heat pump. Optional auxiliary electric heat is field installed in KHA/KHB units. Electric heat operates in single stage. 7.5kW through 30kW heat sections are available for the KHA/KHB heat pump.

Information contained in this manual is intended for use by qualified service technicians only. All specifications are subject to change. Procedures outlined in this manual are presented as a recommendation only and do not supersede or replace local or state codes.

If the unit must be lifted for service, rig unit by attaching four cables to the holes located in the unit base rail (two holes at each corner). Refer to the installation instructions for the proper rigging technique.

Improper installation, adjustment, alteration, service or maintenance can cause property damage, personal injury or loss of life. Installation and service must be performed by a licensed professional installer (or equivalent), service agency or the gas supplier.

ACAUTION

As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

ELECTROSTATIC DISCHARGE (ESD)
Precautions and Procedures

A CAUTION

Electrostatic discharge can affect electronic components. Take precautions during unit installation and service to protect the unit's electronic controls. Precautions will help to avoid control exposure to electrostatic discharge by putting the unit, the control and the technician at the same electrostatic potential. Neutralize electrostatic charge by touching hand and all tools on an unpainted unit surface before performing any service procedure.

AWARNING

Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

Table of Contents

Optional Accessories	Page 2
Specifications	Page 7
Blower Data	Page 11
Blower Data Drive Kits	Page 22
Electrical / Electric Heat Data	Page 24
Electric Heat Capacities	Page 35
Parts Arrangement	Page 36
I Unit Components	Page 37
II Placement and Installation	Page 46
III Start Up	Page 46
IV System Service Checks	Page 47
V Maintenance	Page 50
VI Accessories	Page 51
VII Wiring Diagrams	Page 56

					Unit	Mode	odel No.		
Item						KHA			
	Model No.	Catalog No.						KHA 072	
COOLING SYSTEM	model No.	140.	024	000	000	040	000	012	014
Condensate Drain Trap	PVC - C1TRAP20AD2	76W26	X	Х	Х	Х	Х	Х	Χ
	Copper - C1TRAP10AD2	76W27	X	Х	Х	Х	Х	Х	Х
Drain Pan Overflow Swit		74W42	Х	Х	Χ	Х	Х	Х	X
Low Ambient Kit	K1SNSR13A-2	14D96	Х	Х	Х	Х	Х	Х	Х
Efficiency		Standard	0	0	0	0	0	0	0
Refrigerant Type		R-410A	0	0	0	0	0	0	0
Blower - SUPPLY AI	R								
Motors	Direct Drive - 0.25 hp (208/230V-1ph)	Factory	0	0					
Direct Drive	- 0.5 hp (208/230V-1ph, 208/230V-3ph, 460V-3ph, 575V-3ph)	Factory			0	0			
	Belt Drive - 0.75 hp (208/230V-1ph) Standard Efficiency	Factory			¹ O	¹ O	¹ O		
	Belt Drive - 1.5 hp (208/230V-1ph) Standard Efficiency	Factory			¹ O	¹ O	¹ O		
Belt Dr	ive - 1 hp (208/230V, 460V, 575V-3ph) Standard Efficiency	Factory			0	0	0		
Belt Driv	e - 1.5 hp (208/230V, 460V, 575V-3ph) Standard Efficiency	Factory						0	
Belt Dr	ive - 2 hp (208/230V, 460V, 575V-3ph) Standard Efficiency	Factory			0	0	0	0	
	Belt Drive - 1 hp (208/230V, 460V, 575V-3ph) (2 Speed)	Factory							0
	Belt Drive - 2 hp (208/230V, 460V, 575V-3ph) (2 Speed)	Factory							0
Drive Kits	Kit A01 - T1DRKT001-1 - 673-1010 rpm	Factory			0				
See Blower Data Tables	Kit A02 - T1DRKT002-1 - 745-1117 rpm	Factory				0			
for selection	Kit A03 - T1DRKT003-1 - 833-1250 rpm	Factory					0		
	Kit A04 - T1DRKT004-1 - 968-1340 rpm	Factory						0	0
	Kit A05 - T1DRKT005-1 - 897-1346 rpm	Factory			0				
	Kit A06 - T1DRKT006-1 - 1071-1429 rpm	Factory				0			
	Kit A07 - T1DRKT007-1 - 1212-1548 rpm	Factory					0		
	Kit A08 - T1DRKT008-1 - 1193-1591 rpm	Factory						0	0
CABINET									
Corrosion Protection			0	0	0	0	0	0	0
Hinged Access Panels			0	0	0	0	0	0	0
CONTROLS									
Commercial Controls	L Connection® Building Automation System		Х	Х	Х	Х	Х	Х	Χ
BACnet®Thermostat wit	Display K0SNSR01FF1	97W23	Х	Х	Χ	Х	Χ	Х	Χ
BACnet® Thermostat with	hout Display K0SNSR00FF1	97W24	Х	Х	Χ	Х	Χ	Х	Χ
Plenum Cable (75 ft.)	K0MISC00FF1	97W25	Х	Х	Χ	Х	Х	Х	Х
Smoke Detector - Suppl (Power board and one s		53W78	Х	Х	Х	Х	Х	Х	X
Smoke Detector - Suppl (Power board and two se		53W79	Х	Х	Х	Х	Х	Х	Х

¹ 1 phase belt drive blower motors are available for KHB models only.

NOTE - The catalog and model numbers that appear here are for ordering field installed accessories only.

OX - Field Installed or Configure to Order (factory installed)

O - Configure to Order (Factory Installed)

X - Field Installed

						Unit	Mode	l No.		
Item		Model No.	Catalog No.			KHB	KHA KHB 048	KHB		
ECONOMIZER										
Standard Economizer With Outdoor Air	Hood (Sensible Cont	rol) (Not for Title 2	24)							
Standard Economizer - Includes Barometri and Exhaust Hood	c Relief Dampers	K1ECON30A-3-	14D90	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ
Economizer - No Exhaust			Factory	0	0	0	0	0	0	0
Standard Economizer Controls (Not for	Title 24)									
Single Enthalpy Control		C1SNSR64FF1	53W64	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ
Differential Enthalpy Control (order 2)		C1SNSR64FF1	53W64	Х	Х	Х	Х	Χ	Χ	Х
High Performance Economizer With Out (Approved for California Title 24 Buildin	•	ible Control)		,						
High Performance Economizer - Includes B Dampers and Exhaust Hood	arometric Relief	K1ECON32A-5	23G22	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ
Hgh Performance Economizer - No Exhaus	st		Factory	0	0	0	0	0	0	0
High Performance Economizer Controls	(Not for Title 24)			•						
Single Enthalpy Control		C1SNSR65FF1	23G26	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ
Differential Enthalpy Control (order 2)		C1SNSR65FF1	23G26	Х	Χ	Χ	Х	Χ	Χ	Х
Economizer Accessories										
Horizontal Economizer Conversion Kit		T1HECK00AN1	17W45	Х	Χ	Χ	Χ	Χ	Χ	Х
OUTDOOR AIR				•						
Outdoor Air Dampers - Includes Outdoo	r Air Hood									
Manual		C1DAMP11A-1	53W34	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ
Motorized		K1DAMP21A-1	79W95	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ
POWER EXHAUST FAN										
Standard Static	208/230V-1 or 3ph -	C1PWRE10A-1P	79W87			Χ	Χ	Χ	Χ	X
NOTE - Order Barometric Relief Dampers with Exhaust Hood below	460V-3ph -	C1PWRE10A-1G	79W88			Χ	Х	Χ	Χ	X
if unit is ordered with factory installed Economizer with "No Exhaust" option	575V-3ph	- C1PWRE10A-1J	79W89			Х	Х	Х	X	Х
¹ BAROMETRIC RELIEF										
Barometric Relief Dampers with Exhaust H	lood	C1DAMP50A-1-	74W38	Х	Χ	Χ	Χ	Χ	Χ	Χ

¹ Required when Economizer is factory installed (no exhaust option) with field installed Power Exhaust Fan option.

NOTE - The catalog and model numbers that appear here are for ordering field installed accessories only.

OX - Field Installed or Configure to Order (factory installed)

O - Configure to Order (Factory Installed)

X - Field Installed

OPTIONS	6 / ACCESSORIES - KHA/KHB								
						Mode			
Item		Catalog	КНВ	кнв		KHA KHB			КНВ
	Model No.	No.				048			
ELECTRICA	L								_
Disconnect	See Electrical/Electric Heat Tables for	selection	ОХ	ОХ	ОХ	ОХ	ОХ	ОХ	OX
Voltage	208/230V	- 1 phase	0	0	¹ O	¹ O	¹ O		
60 hz	208/230V	- 3 phase			0	0	0	0	0
	460V	- 3 phase			0	0	0	0	0
	575V	- 3 phase			0	0	0	0	0
GFI Service	15 amp non-powered, field-wired (208/230V, 460V only) LTAGFIK10/15	74M70	ОХ	OX	OX	ОХ	OX	OX	OX
Outlets	20 amp non-powered, field-wired (575V only) C1GFCl20FF1	67E01	Х	Χ	Χ	Χ	Χ	Χ	Χ
Weatherproof (10C89	X	Х	Χ	Х	Х	Х	Χ	
ELECTRIC H	IEAT								
5 kW	208/230V- 1ph - K1EH0050A-1P	12F06	Х	Х					
7.5 kW	208/230V-1ph - T1EH0075AN1P	14W32	Х	Х	1 X	1 X	¹ X		
	208/230V-3ph - T1EH0075AN1Y	14W35			Χ	Χ	Х	Х	Χ
	460V-3ph - T1EH0075AN1G	14W39			Χ	Х	Х	Χ	Х
	575V-3ph - T1EH0075AN1J	14W43			Χ	Χ	Х	Х	Χ
10 kW	208/230V-1ph - T1EH0100A1P	30W26	Х	Χ					
15 kW	208/230V-1ph - T1EH0150AN1P	14W33			1 X	1 X	¹ X		
	208/230V-3ph - T1EH0150AN1Y	14W36			Х	Х	Х	Х	Χ
	460V-3ph - T1EH0150AN1G	14W40			Χ	Х	Х	Х	Χ
	575V-3ph - T1EH0150AN1J	14W44			Χ	Х	Х	Х	Χ
22.5 kW	208/230V-1ph - T1EH0225AN1P	14W34					¹ X		
	208/230V-3ph - T1EH0225AN1Y	14W37					Χ	Χ	Χ
	460V-3ph - T1EH0225AN1G	14W41					Χ	Χ	Χ
	575V-3ph - T1EH0225AN1J	14W45					Χ	Х	Χ
30 kW	208/230V-3ph - T1EH0300N-1Y	14W38						Х	Х
	460V-3ph - T1EH0300N-1G	14W42						Х	Х
	575V-3ph - T1EH0300N-1J	14W46						Х	Χ

¹ KHB models only.

NOTE - The catalog and model numbers that appear here are for ordering field installed accessories only.

OX - Field Installed or Configure to Order (factory installed)

O - Configure to Order (Factory Installed)

X - Field Installed

					Unit	Mode	el No.		
Item		Catalog	KHB	KHB		KHA			KHI
	Model No.	No.				048			
Indoor Air Quality									
Indoor Air Quality (Co ₂) Sensors									
Sensor - Wall-mount, off-white plastic cover with LCD display	C0SNSR50AS1L	77N39	Х	Х	Х	Х	Х	Х	Χ
Sensor - Wall-mount, black plastic case, no display, rated for plenum mounting	C0SNSR53AE1L	87N54	Х	Х	Х	Х	Х	Х	Х
CO ₂ Sensor Duct Mounting Kit - for downflow applications		85L43	Х	Х	Х	Х	Х	Х	Χ
Aspiration Box - for duct mounting non-plenum rated CO2 sensor (77N39)	or	90N43	Х	Х	Х	Х	X	Х	Х
UVC Germicidal Lamps									
¹ Healthy Climate [®] UVC Light Kit (208/230v-1ph)	E1UVCL10AN1	50W90	Х	Х	Х	Х	Х	Х	Χ
ROOF CURBS									
Hybrid Roof Curbs, Downflow									
8 in. height	C1CURB70A-1	11F50	Х	Х	Х	Х	Х	² X	² X
14 in. height	C1CURB71A-1	11F51	Х	Х	Χ	Χ	Х	² X	² X
18 in. height	C1CURB72A-1	11F52	Х	Х	Χ	Χ	Χ	² X	² X
24 in. height	C1CURB73A-1	11F53	Х	Х	Х	Х	Х	² X	² X
Hybrid Roof Curbs, Full Perimeter, Downflow									
8 in. height	K1CURB70AP1	11S47						Х	Χ
14 in. height	K1CURB71AP1	11S48						Х	Χ
18 in. height	K1CURB72AP1	11T01						Х	Χ
24 in. height	K1CURB73AP1	11T06						Х	Χ
Adjustable Pitch Curb, Downflow									
14 in. height	C1CURB55AT1	43W27	Х	Χ	Χ	Χ	Χ	Χ	Χ
CEILING DIFFUSERS									
Step-Down - Order one	RTD9-65S	13K60	Х	Х	Χ	Χ	Х		
	RTD11-95S	13K61						Χ	Χ
Flush - Order one	FD9-65S	13K55	Х	Х	Х	Х	Χ		
	FD11-95S	13K56						Χ	Χ
Transitions (Supply and Return) - Order one	T1TRAN10AN1	17W53	Х	Х	Χ	Х	Χ		
	T1TRAN20N-1	17W54						Х	Χ

¹ Lamps operate on 110-230V single-phase power supply. Step-down transformer may be ordered separately for 460V and 575V units. Alternately, 110V power supply may be used to directly power the UVC ballast(s).

NOTE - The catalog and model numbers that appear here are for ordering field installed accessories only.

² 072 and 074 models will fit smaller roof curbs with overhang. See dimension drawing.

OX - Field Installed or Configure to Order (factory installed)

O - Configure to Order (Factory Installed)

X - Field Installed

OPTIONS / ACCESSORIES -	KHA ONLY					
			l	Jnit Mo	del No).
Item	Model No.	Catalog No.	KHA 036	KHA 048	KHA 060	KHA 072
CABINET						
Combination Coil/Hail Guards	C1GARD51A-1	13R98	Х	Х		
	C1GARD51AT1	13T03			Х	
	K1GARD50AP1	13T17				Х
CONTROLS						
BACnet [®]	K0CTRL31A-1	96W14	OX	OX		
	K0CTRL31AP1	12B99			OX	OX
Novar® 2051	K0CTRL30A-1	96W11	OX	OX		
	K0CTRL30AP1	12B98			OX	OX
INDOOR AIR QUALITY						
Air Filters						
Healthy Climate® High Efficiency Air	MERV 8 (16 x 20 x 2) - C1FLTR15A-1-	54W20	Х	Х		
Filters	MERV 13 (16 x 20 x 2) - T1FLTR40A-1-	52W37	Х	Х		
Order 4 per unit	MERV 8 (20 x 20 x 2) - C1FLTR15D-1-	54W21			Х	Х
	MERV 13 (20 x 20 x 2) - C1FLTR40D-1-	52W39			Х	Х

NOTE - The catalog and model numbers that appear here are for ordering field installed accessories only.

OPTIONS / ACCESSORIES	- KHB ONLY							
				U	nit Mo	del N	lo.	
Item	Model No.	Catalog No.			KHB 036			KHE 074
CABINET								
Combination Coil/Hail Guards	C1GARD51A-1	13R98	Х	Х	Χ			
	C1GARD51AT1	13T03				Х	Х	Х
CONTROLS								
BACnet®	K0CTRL31A-1	96W14	ОХ	OX	OX			
	K0CTRL31AP1	12B99				OX	OX	OX
Novar® 2051	K0CTRL30A-1	96W11	ОХ	OX	ОХ			
	K0CTRL30AP1	12B98				OX	ОХ	OX
INDOOR AIR QUALITY								
Air Filters								
Healthy Climate® High Efficiency Air	MERV 8 (16 x 20 x 2) - C1FLTR15A-1-	54W20	Х	Х	Х			
Filters	MERV 13 (16 x 20 x 2) - T1FLTR40A-1-	52W37	Х	Х	Χ			
Order 4 per unit	MERV 8 (20 x 20 x 2) - C1FLTR15D-1-	54W21				Х	Χ	Х
·	MERV 13 (20 x 20 x 2) - C1FLTR40D-1-	52W39				Χ	Χ	Х

NOTE - The catalog and model numbers that appear here are for ordering field installed accessories only.

OX - Field Installed or Configure to Order (factory installed)

O - Configure to Order (Factory Installed)

X - Field Installed.

OX - Field Installed or Configure to Order (factory installed)

O - Configure to Order (Factory Installed)

X - Field Installed.

General Data	Nominal Tonnage	2 Ton	2.5 Ton	3 Ton	4 Ton
	Model No.	KHB024S4D	KHB030S4D	KHB036S4D	KHB048S4D
	Efficiency Type	Standard	Standard	Standard	Standard
	Blower Type	Multi-Speed	Multi-Speed	Multi-Speed	Multi-Speed
		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Cooling	Gross Cooling Capacity - Btuh	23,700	29,700	36,300	48,700
Performance	¹ Net Cooling Capacity - Btuh	23,000	28,800	35,000	46,500
	AHRI Rated Air Flow - cfm	860	1030	1200	1670
	² Sound Rating Number (SRN) (dBA)	75	75	75	75
	Total Unit Power - kW	2.0	2.4	3.0	4.2
	¹ SEER (Btuh/Watt)	14.0	14.0	14.0	14.0
	¹ EER (Btuh/Watt)	11.7	11.9	11.5	11.4
Refrigerant	Туре	R-410A	R-410A	R-410A	R-410A
	Charge Furnished	12 lbs. 8 oz.	12 lbs. 0 oz.	12 lbs. 0 oz.	14 lbs. 7 oz.
Heating	Total High Heating Capacity - Btuh	25,000	30,000	36,600	49,500
Performance	Total Unit Power - kW	1.9	2.4	2.9	3.9
	¹ COP	3.76	3.72	3.64	3.72
	¹ HSPF - Region IV (Region V)	8.00 (6.70)	8.00 (6.70)	8.00 (6.70)	8.00 (6.70)
	Total Low Heating Capacity - Btuh	14,400	17,200	21,000	30,000
	Total Unit Power - kW	1.8	2.2	2.7	3.7
	COP	2.28	2.30	2.32	2.40
Electric Heati	ng Options - See page 4	5, 7.5, 10 kW	5, 7.5, 10 kW	7.5, 15 kW	7.5, 15 kW
Compressor 1		Scroll (1)	Scroll (1)	Scroll (1)	Scroll (1)
- Outdoor	Net face area - sq. ft.	15.6	15.6	15.6	19.3
Coil	Tube diameter - in.	3/8	3/8	3/8	3/8
	Number of rows	2	2	2	2
	Fins / inch	20	20	20	20
Outdoor	Motor - (No.) HP	1/4	1/4	1/4	1/4
Coil Fan	Motor rpm	825	825	825	825
	Total Motor Input - watts	220	230	240	290
	Diameter - (No.) in. / No. of blades	(1) 24 - 3	(1) 24 - 3	(1) 24 - 3	(1) 24 - 3
	Total air volume - cfm	3300	3300	3300	3900
Indoor Coil	Net face area - sq. ft.	7.8	7.8	7.8	9.7
	Tube diameter - in.	3/8	3/8	3/8	3/8
	Number of rows	3	3	3	3
	Fins / inch	14	14	14	14
	Drain Connection (no.) and size - in.	(1) 1 NPT	(1) 1 NPT	(1) 1 NPT	(1) 1 NPT
	Expansion device type	. ,	Thermostatic Expan	. ,	. ,
Indoor	Nominal Motor HP	0.25	0.25	0.5	0.5
Blower	Wheel nom. diameter x width - in.	(1) 10 x 10	(1) 10 x 10	(1) 10 x 10	(1) 10 x 10
Filters	Type	(1) 10 % 10	Disposable	(1) 10 % 10	Disposable
	Number and size - in.		(4) 16 x 20 x 2		(4) 20 x 20 x 2
Electrical Cha	racteristics - 60 hz	208/230\/	' - 1 phase	208/230V	208/230V
	114010110100 - 00 112	200/200	Pilado	1 phase	1 phase
				208/230V, 460V & 575V 3 phase	208/230V, 460V & 575V 3 phase

¹AHRI Certified to AHRI Standard 210/240: **Cooling Ratings** - 95°F outdoor air temperature and 80°F db/67°F wb entering indoor coil air. **High Temperature Heating Ratings** - 47°F db/43°F wb outdoor air temperature and 70°F entering indoor coil air. **Low Temperature Heating Ratings** - 17°F db/15°F wb outdoor air temperature and 70°F entering indoor coil air.

² Sound Rating Number (SRN) rated in accordance with test conditions included in ARI Standard 270-95.

General Data	3	Nominal Tonnage	3 Ton	4 Ton	5 Ton	6 Ton
		Model No.	KHB036S4B	KHB048S4B	KHB060S4B	KHB074S4T
		Efficiency Type	Standard	Standard	Standard	Standard
		Blower Type	Single Speed	Single Speed	Single Speed	Two-Speed
		-	Belt Drive	Belt Drive	Belt Drive	Belt Drive
Cooling	Gross Cooli	ng Capacity - Btuh	36,300	48,700	62,600	71,000
Performance	Net Cooli	ng Capacity - Btuh	1 35,000	¹ 46,500	1 60,000	² 68,000
		ated Air Flow - cfm	1200	1670	2020	2100
	3 Sound Rating Nu	ımber (SRN) (dBA)	75	75	80	83
	•	al Unit Power - kW	3.0	4.2	5.0	6.2
		SEER (Btuh/Watt)	1 14.0	¹ 14.0	1 14.0	
		IEER (Btuh/Watt)				² 14.0
		EER (Btuh/Watt)	¹ 11.55	¹ 11.4	¹ 11.9	² 11.0
Refrigerant			R-410A	R-410A	R-410A	R-410A
Keirigerani		Type Charge Furnished	12 lbs. 0 oz.	14 lbs. 7 oz.	16 lbs. 0 oz.	24 lbs. 0 oz.
Heating	Total High Hooti					
Heating		ng Capacity - Btuh	36,600	49,500	58,000	70,000
Performance	ŧ lot	al Unit Power - kW	2.9	3.9	4.5	6.1
	LIODE	¹ COP	3.64	3.72	3.72	3.30
		gion IV (Region V)	8.00 (6.70)	8.00 (6.70)	8.00 (6.70)	
		ng Capacity - Btuh	21,000	30,000	34,600	40,000
	Tota	al Unit Power - kW	2.7	3.7	4.2	5.2
		¹ COP	2.32	2.40	2.38	2.25
Electric Hea	ting Options - See	page 4	7.5, 15	7.5, 15	7.5, 15, 22.5	7.5, 15,
						22.5, 30 kW
Compressor	Type (one per uni	t)	Scroll	Scroll	Scroll	Two-Stage Scro
Outdoor Coi	I Ne	et face area - sq. ft.	15.6	19.3	19.3	28.0
		Tube diameter - in.	3/8	3/8	3/8	3/8
		Number of rows	2	2	3	2
		Fins / inch	20	20	20	20
Outdoor Coi	I	Motor - (No.) HP	(1) 1/4	(1) 1/4	(1) 1/3	(1) 1/2
Fan		Motor rpm	825	825	1075	1075
	Total	Motor Input - watts	240	290	405	505
		in. / No. of blades	(1) 24 - 3	(1) 24 - 3	(1) 24 - 3	(1) 24 - 4
	, ,	al air volume - cfm	3300	3900	4300	5735
Indoor Coil		et face area - sq. ft.	7.8	9.7	9.7	9.7
ilidool ooli		Tube diameter - in.	3/8	3/8	3/8	3/8
		Number of rows	3	3	4	4
	Dania Onanastia	Fins / inch	14 (4) 4 NDT	14	14	14
		n (no.) and size - in.	(1) 1 NPT	(1) 1 NPT	(1) 1 NPT	(1) 1 NPT
		pansion device type			nsion Valve, removal	pie power nead
Indoor	Nominal Motor	208/230V-1ph	0.75 hp, 1.5 hp	0.75 hp, 1.5 hp	0.75 hp, 1.5 hp	
Blower &	HP	All others voltages	1 hp, 2 hp	1 hp, 2 hp	1 hp, 2 hp	1 hp, 2 hp
Drive	Maximum Usable	208/230V-1ph	0.86 hp, 1.7 hp	0.86 hp, 1.7 hp	0.86 hp, 1.7 hp	
Selection	Motor HP	All other voltages	1.15 hp, 2.3 hp	1.15 hp, 2.3 hp	1.15 hp, 2.3 hp	2.3 hp
	P	Available Drive Kits	A01	A02	A03	A04
			673 - 1010 rpm	745 - 1117 rpm	833 - 1250 rpm	968 - 1340 rpm
			A05	A06	A07	A08
			897 - 1346 rpm	1071 - 1429 rpm	1212 - 1548 rpm	1193-1591 rpm
	Wheel nominal dis	ameter x width - in.	(1) 10 x 10	(1) 10 x 10	(1) 10 x 10	(1) 10 x 10
Filters	vviicoi riominai ula	Type	(1) 10 x 10		osable	(1) 10 x 10
11613	NI	mber and size - in.	(4) 16 v 20 v 2	ыр		
Electrical Ch			(4) 16 x 20 x 2 208/230V	200/220/7	(4) 20 x 20 x 2 208/230V	
Electrical Cr	naracteristics - 60 h	IZ	1 phase	208/230V 1 phase	1 phase	
			208/230V,	208/230V,	208/230V,	208/230V,
			460V & 575V	460V & 575V	460V & 575V	460V & 575V
			3 phase	3 phase	3 phase	3 phase
			o priase	o priase	o priase	o priase

Cooling Ratings - 95°F outdoor air temperature and 80°F db/67°F wb entering indoor coil air.

High Temperature Heating Ratings - 47°F db/43°F wb outdoor air temperature and 70°F entering indoor coil air.

Low Temperature Heating Ratings - 17°F db/15°F wb outdoor air temperature and 70°F entering indoor coil air.

^{1,2}AHRI Certified to AHRI Standard ¹ 210/240 or ² 340/360 for 074 model:

³ Sound Rating Number (SRN) rated in accordance with test conditions included in ARI Standard 270-95.

⁴ Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor hp required. Maximum usable hp of motors furnished are shown. In Canada, nominal motor hp is also maximum usable motor hp. If motors of comparable hp are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

General Data	Nominal Tonnage	3 Ton	4 Ton	
	Model No.	KHA036S4D	KHA048S4D	
	Efficiency Type	Standard	Standard	
	Blower Type	Multi-Speed Direct Drive	Multi-Speed Direct Drive	
Cooling	Gross Cooling Capacity - Btuh	37,100	49,000	
Performance	¹ Net Cooling Capacity - Btuh	35,600	47,000	
	AHRI Rated Air Flow - cfm	1160	1600	
	² Sound Rating Number (SRN) (dBA)	75	75	
	Total Unit Power - kW	3.3	4.4	
	¹ SEER (Btuh/Watt)	13.0	13.0	
	¹EER (Btuh/Watt)	10.9	10.7	
Refrigerant	Туре	R-410A	R-410A	
	Charge Furnished	12 lbs. 8 oz.	13 lbs. 2 oz.	
Heating	Total High Heating Capacity - Btuh	36,400	48,000	
Performance	Total Unit Power - kW	3.0	4.0	
	¹COP	3.6	3.5	
	¹ HSPF - Region IV (Region V)	7.7 (6.7)	7.7 (6.7)	
	Total Low Heating Capacity - Btuh	22,000	29,500	
	Total Unit Power - kW	2.8	3.6	
	COP	2.3	2.4	
Electric Heati	ing Options - See page 4	7.5, 15 kW	7.5, 15 kW	
	Type (one per unit)	Scroll (1)	Scroll (1)	
Outdoor	Net face area - sq. ft.	15.6	15.6	
Coil	Tube diameter - in.	3/8	3/8	
	Number of rows	2.0	2.0	
	Fins / inch	20	20	
Outdoor	Motor - (No.) HP	(1) 1/4	(1) 1/4	
Coil Fan	Motor rpm	825	825	
	Total Motor Input - watts	250	250	
	Diameter - (No.) in. / No. of blades	(1) 24 - 3	(1) 24 - 3	
	Total air volume - cfm	3300	3300	
Indoor Coil	Net face area - sq. ft.	7.78	7.78	
	Tube diameter - in.	3/8	3/8	
	Number of rows	3	3	
	Fins / inch	14	14	
	Drain Connection (no.) and size - in.	(1) 1 NPT	(1) 1 NPT	
	Expansion device type	Balanced Port Thermostatic Expan	* '	
ndoor	Nominal Motor HP	0.5	0.5	
Blower	Wheel nom. diameter x width - in.	(1) 10 x 10	(1) 10 x 10	
ilters	Type	Dispo		
	Number and size - in.	·		
Electrical Cha	aracteristics - 60 hz	208/230V, 460V & 575V 3 phase	208/230V, 460V & 575V 3 phase	

¹AHRI Certified to AHRI Standard 210/240: **Cooling Ratings** - 95°F outdoor air temperature and 80°F db/67°F wb entering indoor coil air. **High Temperature Heating Ratings** - 47°F db/43°F wb outdoor air temperature and 70°F entering indoor coil air. **Low Temperature Heating Ratings** - 17°F db/15°F wb outdoor air temperature and 70°F entering indoor coil air.

 $^{^{2}}$ Sound Rating Number (SRN) rated in accordance with test conditions included in ARI Standard 270-95.

General Data	Nominal Tonnage	3 Ton	4 Ton	5 Ton	6 Ton
	Model No.	KHA036S4B	KHA048S4B	KHA060S4B	KHA072S4B
	Efficiency Type	Standard	Standard	Standard	Standard
	Blower Type	Single Speed	Single Speed	Single Speed	Single-Speed
	230.00.3760	Belt Drive	Belt Drive	Belt Drive	Belt Drive
Cooling	Gross Cooling Capacity - Btuh	37,100	49,000	61,500	71,300
Performance	Net Cooling Capacity - Btuh	1 35,600	1 47,000	1 59,000	² 69,000
	AHRI Rated Air Flow - cfm	1160	1600	1985	2060
;	³ Sound Rating Number (SRN) (dBA)	75	75	82	83
	Total Unit Power - kW	3.3	4.4	5.4	6.3
	SEER (Btuh/Watt)	¹ 13.0	¹ 13.0	¹ 13.0	
	IEER (Btuh/Watt)				² 12.1
	EER (Btuh/Watt)	¹ 10.9	110.7	¹ 10.9	² 11.0
Refrigerant	Туре	R-410A	R-410A	R-410A	R-410A
· ·	Charge Furnished	12 lbs. 8 oz.	13 lbs. 2 oz.	16 lbs. 0 oz.	20 lbs. 8 oz.
Heating	Total High Heating Capacity - Btuh	36,400	48,000	60,500	70,000
Performance	Total Unit Power - kW	3.0	4.0	4.9	6.2
	¹ COP	3.6	3.5	3.6	3.3
	HSPF - Region IV (Region V)	7.7 (6.7)	7.7 (6.7)	7.7 (6.7)	
-	Total Low Heating Capacity - Btuh	22,000	29,500	36,000	40,000
	Total Unit Power - kW	2.8	3.6	4.5	5.7
	¹ COP	2.3	2.4	2.4	2.25
Electric Heatir	ng Options - See page 4	7.5, 15 kW	7.5, 15 kW	7.5, 15, 22.5 kW	7.5, 15, 22.5, 30 kW
Compressor T	ype (one per unit)	Scroll	Scroll	Scroll	Scroll
Outdoor Coil	Net face area - sq. ft.	15.6	15.6	19.3	28.0
	Tube diameter - in.	3/8	3/8	3/8	3/8
	Number of rows	2	2	2	2
	Fins / inch	20	20	20	20
Outdoor Coil	Motor - (No.) HP	(1) 1/4	(1) 1/4	(1) 1/3	(1) 1/2
Fan	Motor rpm	825	825	1075	1075
	Total Motor Input - watts	250	250	405	680
	Diameter - (No.) in. / No. of blades	(1) 24 - 3	(1) 24 - 3	(1) 24 - 3	(1) 24 - 4
	Total air volume - cfm	3300	3300	4800	5735
Indoor Coil	Net face area - sq. ft.	7.78	7.78	9.7	9.7
	Tube diameter - in.	3/8	3/8	3/8	3/8
	Number of rows	3	3	4	4
	Fins / inch	14	14	14	14
	Drain Connection (no.) and size - in.	(1) 1 NPT	(1) 1 NPT	(1) 1 NPT	(1) 1 NPT
	Expansion device type	Balanced Port	Thermostatic Expan	sion Valve, removat	ole power head
¹ Indoor	Nominal Motor HP		2 hp	1 hp, 2 hp	1.5 hp, 2 hp
Blower &	Maximum Usable Motor HP		, 2.3 hp	1.15 hp, 2.3 hp	1.7 hp, 2.3 hp
Drive	Available Drive Kits	A01	A02	A03	A04
Selection		673 - 1010 rpm	745 - 1117 rpm	833 - 1250 rpm	968 - 1340 rpn
		A05	A06	A07	A08
		897 - 1346 rpm	1071 - 1429 rpm	1212 - 1548 rpm	1193 - 1591 rpi
	Wheel nom. diameter x width - in.	(1) 10 x 10	(1) 10 x 10	(1) 10 x 10	(1) 10 x 10
Filters	Туре	Dispo	sable	Dispo	
	Number and size - in.		< 20 x 2	(4) 20 >	
Electrical Cha	racteristics - 60 hz	208/230V,	208/230V,	208/230V,	208/230V,
		460V & 575V	460V & 575V	460V & 575V	460V & 575V
		3 phase	3 phase	3 phase	3 phase

^{1,2} AHRI Certified to AHRI Standard ¹ 210/240 or ² 340/360:

Cooling Ratings - 95°F outdoor air temperature and 80°F db/67°F wb entering indoor coil air.

High Temperature Heating Ratings - 47°F db/43°F wb outdoor air temperature and 70°F entering indoor coil air. Low Temperature Heating Ratings - 17°F db/15°F wb outdoor air temperature and 70°F entering indoor coil air.

³ Sound Rating Number (SRN) rated in accordance with test conditions included in ARI Standard 270-95.

⁴ Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor hp required. Maximum usable hp of motors furnished are shown. In Canada, nominal motor hp is also maximum usable motor hp. If motors of comparable hp are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

BLOWER DATA - DIRECT DRIVE - KHB024-030

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.) See page 23.
- 2 Any field installed accessories air resistance (electric heat, duct resistance, diffuser, etc.) See page 23.

External Static		Air	Volume (cfm) at V	arious Blower Sp	eeds	
Pressure (in.		208 VOLTS			230 VOLTS	
w.g.)	High	Medium	Low	High	Medium	Low
2 and 2.5 Ton Stan	dard Efficiency (Downflow)	,		KHB024	S and KHB030S
0.0	1199	928	838	1379	1085	877
0.1	1229	926	813	1409	1086	872
0.2	1206	928	782	1367	1094	850
0.3	1183	881	742	1350	1047	820
0.4	1159	843	686	1321	1009	783
0.5	1136	812	643	1282	981	762
0.6	1103	766	569	1242	921	705
0.7	1046	728	496	1195	888	625
0.8	953	648	432	1134	792	583
0.9	909	584	335	1037	738	492
1.0	783	465	247	926	592	411
2 and 2.5 Ton Stan	dard Efficiency (Horizontal)			KHB024	S and KHB030S
0.0	1152	909	801	1325	1063	838
0.1	1152	893	770	1321	1048	826
0.2	1136	866	734	1288	1021	798
0.3	1104	826	697	1260	982	771
0.4	1072	787	643	1222	942	734
0.5	1041	747	589	1175	903	698
0.6	1009	707	534	1137	850	662
0.7	946	654	467	1081	797	588
0.8	861	588	396	1024	718	535
0.9	798	508	319	911	642	468
1.0	715	443	237	846	564	394

BLOWER DATA - DIRECT DRIVE - KHA/KHB036, KHA048

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.) See page 23.
- 2 Any field installed accessories air resistance (electric heat, duct resistance, diffuser, etc.) See page 23.

External Static			Air \	Volume (cfn	n) at Various	Blower Spe	eds		
Pressure (in.		208 VOLTS			230 VOLTS		4	60/575 VOLT	S
w.g.)	High	Medium	Low	High	Medium	Low	High	Medium	Low
3 and 4 Ton Stand	ard Efficien	cy (Downflo	w)				KHA/K	HB036S and	KHA048S
0.0	1938	1552	1119	2167	1772	1317	2136	1716	1212
0.1	1992	1586	1128	2167	1780	1315	2104	1728	1208
0.2	1915	1592	1137	2100	1792	1307	2052	1684	1197
0.3	1865	1536	1083	2043	1735	1266	1994	1647	1172
0.4	1813	1495	1033	1986	1678	1204	1918	1597	1134
0.5	1762	1444	976	1909	1621	1164	1861	1534	1096
0.6	1694	1391	899	1814	1535	1082	1765	1485	1059
0.7	1609	1331	817	1718	1478	1000	1689	1410	996
0.8	1471	1220	730	1603	1364	918	1613	1335	920
0.9	1368	1066	522	1488	1250	755	1498	1235	848
1.0	1108	869	402	1259	1021	640	1345	1036	763
3 and 4 Ton Stand	ard Efficien	cy (Horizon	tal)				KHA/K	HB036S and	KHA048S
0.0	1862	1520	1070	2082	1736	1259	2085	1745	1247
0.1	1867	1530	1069	2031	1717	1246	2070	1744	1257
0.2	1804	1485	1067	1978	1672	1227	2016	1690	1225
0.3	1741	1440	1018	1907	1627	1190	1944	1643	1192
0.4	1677	1396	968	1837	1567	1128	1890	1596	1160
0.5	1614	1329	894	1749	1492	1066	1800	1533	1111
0.6	1550	1284	844	1660	1417	1016	1727	1455	1062
0.7	1455	1195	769	1554	1327	941	1655	1377	996
0.8	1329	1106	670	1448	1237	842	1511	1283	865
0.9	1202	927	496	1307	1087	718	1403	1190	784
1.0	1012	828	385	1150	973	613	1222	1002	670

BLOWER DATA - DIRECT DRIVE - KHB048

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.) See page 23.
- 2 Any field installed accessories air resistance (electric heat, duct resistance, diffuser, etc.) See page 23.

External Static			Air	Volume (cfn	n) at Various	Blower Spe	eds		
Pressure (in.		208 VOLTS			230 VOLTS		4	60/575 VOL	TS
w.g.)	High	Medium	Low	High	Medium	Low	High	Medium	Low
4 Ton Standard Ef	ficiency (De	ownflow)		,					KHB048S
0.0	1951	1542	1098	2139	1542	1271	2139	1542	1271
0.1	1918	1526	1081	2105	1526	1261	2105	1526	1261
0.2	1877	1508	1062	2054	1508	1238	2054	1508	1238
0.3	1814	1448	1026	1986	1448	1196	1986	1448	1196
0.4	1752	1407	990	1918	1407	1154	1918	1407	1154
0.5	1689	1347	936	1826	1347	1099	1826	1347	1099
0.6	1605	1286	864	1735	1286	1043	1735	1286	1043
0.7	1500	1206	774	1644	1206	932	1644	1206	932
0.8	1375	1085		1461	1085		1461	1085	
0.9	1202								
1.0									
4 Ton Standard Ef	ficiency (He	orizontal)							KHB048S
0.0	1901	1506	1079	2072	1718	1249	2072	1718	1249
0.1	1855	1478	1069	2026	1686	1238	2026	1686	1238
0.2	1800	1458	1049	1969	1644	1206	1969	1644	1206
0.3	1744	1396	1012	1908	1601	1161	1908	1601	1161
0.4	1687	1346	936	1847	1530	1115	1847	1530	1115
0.5	1630	1296	886	1755	1460	1047	1755	1460	1047
0.6	1546	1222	811	1663	1403	1002	1663	1403	1002
0.7	1461	1147	735	1572	1290	910	1572	1290	910
0.8	1347	1073	660	1419	1205	820	1419	1205	820
0.9	1178	874	560	1296	1006	683	1296	1006	683
1.0	954	624	358	1129		496	1129		496

BLOWER DATA - BELT DRIVE - KHA/KHB036

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).
- See page 22 for blower motors and drives and page 23 for wet coil and options/accessory air resistance data.

DO	ΝN	FΙ	O	N
DU			\mathbf{v}	7 V

.Ovv															
		_				1		1		_					
								_						-	
RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
	F	Field Fu	ırnished	t						Kit	A01				
486	0.12	554	0.16	623	0.20	695	0.22	767	0.23	836	0.25	897	0.28	953	0.30
508	0.15	576	0.19	643	0.22	713	0.24	783	0.26	848	0.28	907	0.30	961	0.33
533	0.18	599	0.22	665	0.25	733	0.27	800	0.28	863	0.31	919	0.34	971	0.36
560	0.21	625	0.25	689	0.28	755	0.30	820	0.32	879	0.34	932	0.37	983	0.40
591	0.24	654	0.28	716	0.31	779	0.33	841	0.35	897	0.38	948	0.41	996	0.44
631	0.26	690	0.30	748	0.34	807	0.36	864	0.39	916	0.42	964	0.46	1011	0.49
676	0.28	729	0.33	782	0.36	835	0.40	887	0.43	935	0.47	981	0.50	1028	0.54
				,		Exte	rnal Sta	tic - in.	w.g.					-	•
0.	90	1.	00	1.1	10	1.3	20	1.3	30	1.	40	1.	50	1.0	60
RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР
Kit	A01							Kit .	A05						
1004	0.33	1055	0.35	1106	0.37	1152	0.40	1193	0.43	1232	0.46	1269	0.49	1305	0.52
1011	0.36	1062	0.38	1111	0.41	1157	0.43	1199	0.47	1238	0.50	1276	0.53	1311	0.56
1020	0.39	1070	0.41	1118	0.44	1163	0.47	1206	0.51	1245	0.54	1282	0.58	1318	0.61
1031	0.43	1079	0.45	1127	0.48	1171	0.52	1213	0.55	1252	0.59	1289	0.62	1324	0.66
1044	0.47	1091	0.49	1137	0.53	1181	0.56	1221	0.60	1259	0.64	1296	0.68	1330	0.71
1058	0.51	1105	0.54	1150	0.57	1191	0.61	1231	0.65	1268	0.69	1303	0.73	1337	0.77
1074	0.56	1120	0.59	1163	0.63	1203	0.67	1241	0.71	1277	0.75	1312	0.79	1345	0.82
NTAL															
	0. RPM 486 508 533 560 591 631 676 0.: RPM Kit. 1004 1011 1020 1031 1044 1058 1074	0.10 RPM BHP 486 0.12 508 0.15 533 0.18 560 0.21 591 0.24 631 0.26 676 0.28 0.90 RPM BHP Kit A01 1004 0.33 1011 0.36 1020 0.39 1031 0.43 1044 0.47 1058 0.51 1074 0.56	0.10 0 RPM BHP RPM Field Fu 486 0.12 554 508 0.15 576 533 0.18 599 560 0.21 625 591 0.24 654 631 0.26 690 676 0.28 729 0.90 1. RPM BHP RPM Kit A01 1004 0.33 1055 1011 0.36 1062 1020 0.39 1070 1031 0.43 1079 1044 0.47 1091 1058 0.51 1105 1074 0.56 1120	0.10 0.20 RPM BHP RPM BHP 486 0.12 554 0.16 508 0.15 576 0.19 533 0.18 599 0.22 560 0.21 625 0.25 591 0.24 654 0.28 631 0.26 690 0.30 676 0.28 729 0.33 No RPM BHP RPM BHP Kit A01 No No No 1004 0.33 1055 0.35 1011 0.36 1062 0.38 1020 0.39 1070 0.41 1031 0.43 1079 0.45 1044 0.47 1091 0.49 1058 0.51 1105 0.54 1074 0.56 1120 0.59	0.10 0.20 0.3 Field Furnished 486 0.12 554 0.16 623 508 0.15 576 0.19 643 533 0.18 599 0.22 665 560 0.21 625 0.25 689 591 0.24 654 0.28 716 631 0.26 690 0.30 748 676 0.28 729 0.33 782 0.90 1.00 1. RPM BHP RPM BHP RPM Kit A01 1 0.30 748 1106 1004 0.33 1055 0.35 1106 1011 0.36 1062 0.38 1111 1020 0.39 1070 0.41 1118 1031 0.43 1079 0.45 1127 1044 0.47 1091 0.49 1137	0.10 0.20 0.30 RPM BHP RPM BHP RPM BHP Field Furnished 486 0.12 554 0.16 623 0.20 508 0.15 576 0.19 643 0.22 533 0.18 599 0.22 665 0.25 560 0.21 625 0.25 689 0.28 591 0.24 654 0.28 716 0.31 631 0.26 690 0.30 748 0.34 676 0.28 729 0.33 782 0.36 Interval Application of Color of	Exte 0.10 0.20 0.30 0.4 FPM BHP RPM BHP RPM RPM BHP RPM BHP RPM BHP RPM BHP RPM 486 0.12 554 0.16 623 0.20 695 508 0.15 576 0.19 643 0.22 713 533 0.18 599 0.22 665 0.25 733 560 0.21 625 0.25 689 0.28 755 591 0.24 654 0.28 716 0.31 779 631 0.26 690 0.30 748 0.34 807 676 0.28 729 0.33 782 0.36 835 Exte 0.90 1.00 1.10 1. RPM BHP RPM BHP RPM BHP RPM 1004 0.33 1055 0.35 1106 0.37 1152 1011 0.36 </td <td>External State 0.10 0.20 0.30 0.40 RPM BHP RPM BHP RPM BHP Field Furnished 486 0.12 554 0.16 623 0.20 695 0.22 508 0.15 576 0.19 643 0.22 713 0.24 533 0.18 599 0.22 665 0.25 733 0.27 560 0.21 625 0.25 689 0.28 755 0.30 591 0.24 654 0.28 716 0.31 779 0.33 631 0.26 690 0.30 748 0.34 807 0.36 676 0.28 729 0.33 782 0.36 835 0.40 External State 0.90 1.00 1.10 1.20 RPM BHP RPM BHP RPM BHP 10.90 1.00<</td> <td> D.10</td> <td>External Static - in. w.g. 0.10 0.20 0.30 0.40 0.50 RPM BHP RPM BAC 0.23 0.22 767 0.23 0.26 695 0.22 763 0.24 783 0.26 690 0.25 733 0.27 800 0.28 266 50.25 689 0.28 755 0.30 820 0.32 28 691 0.31 779 0.33 841 0.39 0.43 807 0.36 864</td> <td>External Static - in. w.g. 0.10 0.20 0.30 0.40 0.50 0.4 RPM BHP RPM BHR RPM</td> <td> Note Note</td> <td>External Static - in. w.g. 0.10 0.20 0.30 0.40 0.50 0.60 0.60 0.50 0.60 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.22 665 0.22 665 0.22 665 0.22 665 0.22 665 0.25 689 0.22 665 0.25 689 0.22 665 0.25 689 0.28 755 0.30 820 0.32 897 0.38 989 0.28 765 0.30 820 0.32 897 0.38 989 0.38 989<</td> <td> Direction Dir</td> <td>Exterior Is Is</td>	External State 0.10 0.20 0.30 0.40 RPM BHP RPM BHP RPM BHP Field Furnished 486 0.12 554 0.16 623 0.20 695 0.22 508 0.15 576 0.19 643 0.22 713 0.24 533 0.18 599 0.22 665 0.25 733 0.27 560 0.21 625 0.25 689 0.28 755 0.30 591 0.24 654 0.28 716 0.31 779 0.33 631 0.26 690 0.30 748 0.34 807 0.36 676 0.28 729 0.33 782 0.36 835 0.40 External State 0.90 1.00 1.10 1.20 RPM BHP RPM BHP RPM BHP 10.90 1.00<	D.10	External Static - in. w.g. 0.10 0.20 0.30 0.40 0.50 RPM BHP RPM BAC 0.23 0.22 767 0.23 0.26 695 0.22 763 0.24 783 0.26 690 0.25 733 0.27 800 0.28 266 50.25 689 0.28 755 0.30 820 0.32 28 691 0.31 779 0.33 841 0.39 0.43 807 0.36 864	External Static - in. w.g. 0.10 0.20 0.30 0.40 0.50 0.4 RPM BHP RPM BHR RPM	Note Note	External Static - in. w.g. 0.10 0.20 0.30 0.40 0.50 0.60 0.60 0.50 0.60 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.22 665 0.22 665 0.22 665 0.22 665 0.22 665 0.25 689 0.22 665 0.25 689 0.22 665 0.25 689 0.28 755 0.30 820 0.32 897 0.38 989 0.28 765 0.30 820 0.32 897 0.38 989 0.38 989<	Direction Dir	Exterior Is

1500

1073

0.57

1117

0.60

1159

0.64

							Exte	rnal Sta	atic - in.	w.g.						
Air Volume	0.	10	0.:	20	0.	30	0.	40	0.	50	0.0	60	0.	70	0.	80
cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
		ı	Field Fu	rnishe	d						Kit	A01				
900	485	0.11	554	0.14	627	0.16	703	0.18	780	0.21	841	0.23	888	0.27	935	0.30
1000	509	0.13	578	0.16	649	0.19	722	0.21	796	0.23	854	0.26	900	0.29	947	0.33
1100	537	0.16	605	0.19	674	0.21	744	0.24	813	0.26	868	0.29	913	0.33	959	0.36
1200	567	0.19	633	0.22	700	0.24	768	0.27	833	0.30	884	0.33	928	0.37	974	0.40
1300	599	0.22	664	0.25	729	0.28	793	0.30	853	0.33	902	0.37	945	0.41	990	0.44
1400	634	0.26	697	0.29	758	0.31	819	0.34	875	0.38	921	0.42	964	0.46	1008	0.49
1500	669	0.30	730	0.33	789	0.36	846	0.39	897	0.42	941	0.47	983	0.51	1028	0.54
							Evto	rnal Sta	tic - in	W C						

							Exte	rnai Sta	itic - in.	w.g.						
Air	0.9	90	1.0	00	1.	10	1.3	20	1.3	30	1.4	40	1.	50	1.0	60
Volume cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
	Kit	A01							Kit .	A05						
900	986	0.32	1039	0.35	1090	0.37	1137	0.40	1177	0.43	1214	0.46	1248	0.49	1280	0.51
1000	997	0.35	1048	0.38	1098	0.41	1143	0.44	1184	0.47	1221	0.50	1255	0.53	1287	0.56
1100	1008	0.39	1059	0.41	1107	0.44	1150	0.47	1191	0.51	1228	0.54	1263	0.57	1295	0.60
1200	1022	0.43	1071	0.45	1117	0.48	1160	0.52	1200	0.55	1237	0.59	1271	0.62	1303	0.66
1300	1037	0.47	1085	0.50	1130	0.53	1171	0.57	1210	0.60	1246	0.64	1280	0.68	1312	0.71
1400	1054	0.52	1100	0.54	1144	0.58	1183	0.62	1221	0.66	1256	0.70	1290	0.73	1321	0.77

0.67

1234

0.71

1268

0.75

1301

0.79

1332

0.83

1197

BLOWER DATA - BELT DRIVE - KHA048

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).

DOWNFL	.ow															
Α!							Exte	rnal Sta	itic - in.	w.g.						
Air Volume	0.	10	0.:	20	0.	30	0.	40	0.	50	0.0	60	0.	70	0.8	80
cfm	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
			ield Fu								Kit					
1200	560	0.21	625	0.25	689	0.28	755	0.30	820	0.32	879	0.34	932	0.37	983	0.40
1300	591	0.24	654	0.28	716	0.31	779	0.33	841	0.35	897	0.38	948	0.41	996	0.44
1400	631	0.26	690	0.30	748	0.34	807	0.36	864	0.39	916	0.42	964	0.46	1011	0.49
1500	675	0.28	729	0.33	782	0.36	835	0.40	887	0.43	935	0.47	981	0.50	1028	0.54
1600	718	0.31	766	0.35	814	0.40	862	0.44	910	0.48	955	0.52	1000	0.55	1046	0.59
1700	756	0.34	799	0.39	843	0.44	887	0.49	932	0.53	976	0.57	1020	0.61	1066	0.64
1800	787	0.40	828	0.45	870	0.50	912	0.55	955	0.59	999	0.63	1043	0.67	1089	0.70
1900	815	0.46	855	0.51	897	0.57	939	0.62	981	0.66	1024	0.69	1068	0.73	1113	0.76
2000	843	0.53	884	0.59	925	0.64	968	0.68	1009	0.72	1052	0.76	1095	0.79	1138	0.83
Air									tic - in.							
Volume	0.9		1.0			10		20	1.3		1.4		1.5			60
cfm	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР
4000	1001	Kit /		0.45	4407	0.40	4474	0.50	4040	Kit.		0.50	4000	0.00	4004	0.00
1200	1031	0.43	1079	0.45	1127	0.48	1171	0.52	1213	0.55	1252	0.59	1289	0.62	1324	0.66
1300	1044	0.47	1091	0.49	1137	0.53	1181	0.56	1221	0.60	1259	0.64	1296	0.68	1330	0.71
1400	1058	0.51 0.56	1105 1120	0.54	1150 1163	0.57 0.63	1191 1203	0.61	1231 1241	0.65	1268 1277	0.69 0.75	1303 1312	0.73 0.79	1337 1345	0.77
1500 1600	1074 1092	0.56	1137	0.65	1178	0.68	1203	0.67	1253		1288	0.75	1321	0.79	1354	0.82
1700	1112	0.67	1155	0.03	1193	0.00	1230	0.72	1265	0.76	1299	0.87	1332	0.84	1364	0.85
1800	1133	0.07	1174	0.70	1209	0.75	1244	0.79	1203	0.83	1311	0.87	1343	0.91	1375	1.02
1900	1156	0.73	1193	0.77	1209	0.89	1260	0.03	1276	0.90	1325	1.01	1356	1.06	1388	1.10
2000	1178	0.87	1213	0.04	1243	0.89	1275	1.02	1307	1.06	1339	1.10	1370	1.14	1402	1.18
HORIZON		0.07	1210	0.32	1270	0.51	1275	1.02	1307	1.00	1000	1.10	1370	1.17	1402	1.10
	1175						Fxte	rnal Sta	itic - in.	w.a.						
Air	0.	10	0.:	20	0.:	30		40	0.		0.0	60	0.	70	0.8	80
Volume	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
cfm			ield Fu								Kit		,			
1200	567	0.19	633	0.22	700	0.24	768	0.27	833	0.30	884	0.33	928	0.37	974	0.40
1300	599	0.22	664	0.25	729	0.28	793	0.30	853	0.33	902	0.37	945	0.41	990	0.44
1400	634	0.26	697	0.29	758	0.31	819	0.34	875	0.38	921	0.42	964	0.46	1008	0.49
1500	669	0.30	730	0.33	789	0.36	846	0.39	897	0.42	941	0.47	983	0.51	1028	0.54
1600	705	0.34	763	0.37	819	0.40	873	0.43	921	0.48	963	0.52	1004	0.56	1048	0.59
1700	741	0.38	796	0.41	850	0.45	900	0.49	945	0.53	985	0.58	1026	0.62	1070	0.65
1800	776	0.43	829	0.46	880	0.51	927	0.55	970	0.60	1009	0.64	1050	0.68	1093	0.71
1900	812	0.48	862	0.52	910	0.57	955	0.62	996	0.66	1035	0.71	1076	0.74	1118	0.78
2000	847	0.54	895	0.59	941	0.64	984	0.69	1023	0.74	1062	0.78	1103	0.81	1144	0.85
Air									tic - in.		1					
Volume	0.9		1.0		1.			20		30	1.4		1.			60
cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP
	1000	Kit							1000		A06		10=1		1000	
1200	1022	0.43	1071	0.45	1117	0.48	1160	0.52	1200	0.55	1237	0.59	1271	0.62	1303	0.66
1300	1037	0.47	1085	0.50	1130	0.53	1171	0.57	1210	0.60	1246	0.64	1280	0.68	1312	0.71
1400	1054	0.52	1100	0.54	1144	0.58	1183	0.62	1221	0.66	1256	0.70	1290	0.73	1321	0.77
1500	1073	0.57	1117	0.60	1159	0.64	1197	0.67	1234	0.71	1268	0.75	1301	0.79	1332	0.83
1600	1093	0.62	1136	0.66	1175	0.70	1212	0.74	1247	0.78	1281	0.82	1313	0.86	1344	0.90
1700	1114	0.68	1155	0.72	1192	0.76	1227	0.80	1262	0.85	1295	0.89	1327	0.93	1358	0.97
1800	1136	0.75	1175	0.79	1210	0.83	1245	0.88	1278	0.92	1311	0.97	1342	1.01	1373	1.05
1900	1159	0.82	1197	0.86	1229	0.92	1263	0.97	1296	1.01	1328	1.06	1359	1.10	1390	1.14
2000	1183	0.90	1218	0.95	1249	1.01	1282	1.06	1314	1.11	1346	1.15	1377	1.20	1408	1.24

BLOWER DATA - BELT DRIVE - KHB048

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).

DOWNFL	.ow															
Air							Exte	rnal Sta	atic - in.	w.g.						
Volume	0.		0.:		0.3		0.			50	0.0			70	0.8	
cfm	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
					irnished		1				1		A02			
1200	527	0.18	584	0.21	643	0.25	702	0.28	779	0.30	860	0.30	927	0.31	973	0.34
1300	550	0.21	607	0.25	664	0.29	722	0.32	797	0.33	875	0.34	937	0.35	981	0.38
1400	574	0.25	630	0.29	687	0.32	744	0.35	817	0.37	890	0.38	949	0.39	991	0.42
1500	603	0.28	659	0.32	714	0.36	770	0.39	839	0.41	907	0.42	962	0.44	1002	0.47
1600	651	0.29	703	0.33	754	0.37	806	0.41	867	0.43	927	0.45	976	0.48	1014	0.51
1700	708	0.30	754	0.34	800	0.38	846	0.42	898	0.46	949	0.49	992	0.53	1028	0.57
1800 1900	764	0.31	804	0.36	844	0.40	884	0.45	927	0.49	970	0.54	1008	0.58	1044	0.63
2000	812	0.34	847 878	0.39	881 909	0.44	916 942	0.49	953 975	0.54	990	0.59	1025 1044	0.64 0.71	1061	0.69
2000	847	0.40	0/0	0.45	909	0.50			atic - in.		1009	0.66	1044	0.71	1079	0.76
Air	0.9	20	1	00	1	10	1.		1	w.g. 30	1	40	1	50	1.0	60
Volume	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
cfm	IXI IVI	Dill		A02	IXI IVI	Dill	IXI IVI	Dill	IXI IVI	Dill	Kit		IXI IVI	Dill	IXI IVI	Dill
1200	1008	0.38	1047	0.42	1089	0.46	1133	0.49	1180	0.53	1224	0.56	1261	0.60		
1300	1017	0.42	1055	0.46	1097	0.5	1139	0.53	1184	0.57	1228	0.60	1264	0.63	1295	0.67
1400	1026	0.46	1065	0.50	1106	0.54	1147	0.57	1191	0.61	1233	0.64	1269	0.68	1300	0.71
1500	1038	0.51	1076	0.55	1117	0.59	1157	0.62	1199	0.65	1240	0.69	1275	0.72	1305	0.76
1600	1050	0.56	1089	0.60	1129	0.64	1168	0.67	1209	0.71	1249	0.74	1282	0.78	1312	0.82
1700	1065	0.61	1103	0.65	1142	0.69	1181	0.73	1221	0.76	1259	0.80	1292	0.83	1320	0.88
1800	1081	0.67	1118	0.71	1156	0.75	1194	0.79	1234	0.82	1271	0.86	1302	0.90	1330	0.94
1900	1098	0.73	1135	0.77	1172	0.81	1209	0.85	1248	0.88	1284	0.92	1314	0.97	1341	1.01
2000	1116	0.80	1152	0.84	1189	0.88	1226	0.92	1264	0.96	1299	1.00	1327	1.04	1353	1.09
HORIZON	ITAL			•												
A i w							Exte	rnal Sta	atic - in.	w.g.						
Air Volume	0.		0.:		0.3		0.		0.		0.0			70	0.8	
cfm	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
					irnished								A02			
1200	528	0.17	581	0.20	641	0.23	706	0.25	782	0.27	859	0.29	924	0.31	974	0.34
1300	556	0.21	609	0.24	669	0.26	731	0.29	804	0.31	877	0.33	938	0.35	985	0.38
1400	592	0.24	645	0.27	702	0.30	763	0.32	830	0.35	898	0.37	953	0.39	997	0.43
1500	641	0.26	692	0.29	746	0.33	801	0.36	862	0.38	921	0.41	970	0.44	1011	0.48
1600	696	0.28	743	0.32	792	0.35	842	0.39	894	0.42	945	0.45	988	0.49	1027	0.53
1700	750	0.31	792	0.35	836	0.39	880	0.43	924	0.47	968	0.51	1007	0.55	1043	0.59
1800	799	0.35	837	0.39	875	0.43	913	0.48	952	0.52	990	0.56	1026	0.61	1061	0.65
1900	840	0.40	873	0.45	907	0.49	941	0.54	976	0.58	1011	0.63	1045	0.67	1080	0.72
2000	873	0.47	903	0.51	934	0.56	966 Exto	0.60	998 atic - in.	0.65	1032	0.70	1066	0.75	1101	0.79
Air	0.9	90	1	00	1	10		20		w.g. 30	1.	40	1	50	1 1	60
Volume	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	BHP
cfm	TXI IVI	D 111		A02	131 101	D 111	131 101	D 111	121 101			A06	131 101	D 111	131 101	<u> </u>
1200	1014	0.38	1052	0.42	1093	0.45	1135	0.48	1176	0.51	1217	0.54	1257	0.58	1296	0.61
1300	1023	0.42	1061	0.46	1102	0.50	1143	0.53	1184	0.56	1224	0.59	1263	0.62	1302	0.66
1400	1035	0.47	1073	0.51	1112	0.54	1153	0.57	1193	0.61	1232	0.64	1271	0.67	1309	0.71
1500	1048	0.52	1086	0.56	1125	0.59	1164	0.63	1204	0.66	1243	0.69	1280	0.73	1317	0.77
1600	1063	0.57	1100	0.61	1139	0.65	1178	0.68	1216	0.71	1254	0.75	1291	0.79	1326	0.83
1700	1079	0.63	1116	0.67	1154	0.71	1192	0.74	1230	0.78	1267	0.81	1302	0.85	1337	0.89
1800	1097	0.69	1133	0.73	1171	0.77	1209	0.80	1246	0.84	1281	0.88	1315	0.92	1349	0.96
1900	1116	0.76	1152	0.80	1189	0.84	1226	0.87	1262	0.91	1296	0.95	1329	0.99	1361	1.03
2000	1136	0.83	1172	0.87	1208	0.91	1245	0.94	1280	0.99	1313	1.03	1344	1.07	1375	1.11

BLOWER DATA - BELT DRIVE - KHA/KHB060

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).

DOWNFL		JIOWCI II	100013 4	- alive	o and p	age 20	ioi wet	- and	Ориона		ory all it	Colotant	c data.			
DOWNEL	.Ovv					-	Fxte	rnal Sta	atic - in.	w.a.						
Air	0.	10	0.:	20	0.	30		40	0.4		0.	60	0.	70	0.	80
Volume	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
cfm			F	Field Fu	irnishe						,		A03		'	
1600	665	0.30	716	0.34	768	0.38	819	0.41	879	0.44	937	0.46	985	0.49	1022	0.52
1700	723	0.31	768	0.35	814	0.39	860	0.43	910	0.47	959	0.50	1001	0.54	1037	0.58
1800	779	0.32	818	0.37	857	0.41	897	0.46	939	0.50	980	0.55	1018	0.59	1054	0.64
1900	826	0.36	859	0.41	894	0.45	928	0.50	964	0.56	1000	0.61	1036	0.66	1072	0.70
2000	857	0.42	889	0.47	920	0.52	952	0.57	986	0.62	1020	0.68	1055	0.73	1091	0.77
2100	878	0.49	909	0.54	940	0.59	973	0.64	1006	0.70	1041	0.75	1076	0.80	1112	0.85
2200	897	0.55	929	0.61	961	0.66	994	0.72	1028	0.78	1063	0.83	1099	0.89	1134	0.93
2300	918	0.62	950	0.68	983	0.74	1017	0.80	1052	0.86	1087	0.92	1122	0.97	1157	1.02
2400	941	0.70	974	0.77	1008	0.83	1042	0.90	1077	0.96	1111	1.01	1146	1.06	1181	1.11
Air							1	-	atic - in.	w.g.						
Volume		90		00		10		20		30		40		50		60
cfm	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	ВНР
	10-0		1000			A03			1010					A07	1010	
1600	1059	0.57	1098	0.61	1138	0.65	1177	0.68	1218	0.71	1257	0.75	1290	0.79	1319	0.83
1700	1074	0.62	1113	0.66	1152	0.70	1190	0.74	1231	0.77	1268	0.80	1299	0.84	1328	0.89
1800	1091	0.68	1129	0.72	1167	0.76	1205	0.80	1244	0.83	1280	0.87	1310	0.91	1338	0.95
1900	1109	0.75	1146	0.79	1183	0.82	1221	0.86	1260	0.90	1294	0.94	1323	0.98	1349	1.02
2000	1128	0.82	1164	0.86	1201	0.89	1239	0.93	1276	0.97	1310	1.01	1336	1.06	1362	1.10
2100	1148	0.89	1185	0.93	1221	0.97	1258	1.01	1294	1.05	1325	1.09	1351	1.14	1376	1.19
2200	1170	0.97	1206 1228	1.01	1242 1262	1.05	1277	1.09	1311 1327	1.14	1341	1.18 1.29	1365 1380	1.23	1390	1.28
2400	1193 1216	1.06 1.15	1250	1.19	1282	1.14	1295 1313	1.19	1343	1.24 1.36	1355 1371	1.40	1396	1.33	1406 1423	1.37
HORIZON	l	1.15	1230	1.19	1202	1.24	1313	1.50	1040	1.50	1371	1.40	1390	1.44	1423	1.40
	TIAL						Fxte	rnal Sta	atic - in.	w.a.						
Air	0.	10	0.:	20	0.	30	1	40	0.4		0.	60	0.	70	0.	80
Volume	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
cfm			ield Fu					,				A03	'			
1600	712	0.29	758	0.32	807	0.36	855	0.39	906	0.43	955	0.46	997	0.50	1035	0.54
1700	766	0.32	808	0.36	850	0.40	892	0.44	936	0.47	978	0.51	1016	0.56	1052	0.60
1800	814	0.36	851	0.40	888	0.44	925	0.49	963	0.53	1000	0.57	1035	0.62	1071	0.66
1900	853	0.41	886	0.46	919	0.50	952	0.55	986	0.60	1021	0.64	1056	0.69	1091	0.73
2000	883	0.48	913	0.53	944	0.57	976	0.62	1009	0.67	1043	0.71	1078	0.76	1112	0.80
2100	906	0.56	936	0.60	967	0.65	999	0.70	1033	0.75	1067	0.79	1101	0.84	1135	0.88
2200	930	0.64	960	0.68	991	0.73	1024	0.78	1058	0.83	1092	0.88	1126	0.92	1160	0.96
2300	954	0.72	985	0.77	1017	0.82	1051	0.87	1085	0.92	1119	0.96	1152	1.00	1186	1.04
2400	981	0.81	1013	0.86	1046	0.91	1079	0.96	1113	1.00	1146	1.05	1180	1.09	1213	1.13
Air						10			atic - in.							
Volume		90		00		10		20		30		40		50		60
cfm	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР
1600	1071	0.50	1100	0.62		A03	1106	0.60	1225	0.72	1262	0.76		A07	1224	0.02
1600	1071	0.58	1109	0.62	1147	0.66	1186	0.69	1225	0.72	1263	0.76	1299	0.80	1334	0.83
<u>1700</u> 1800	1088 1107	0.64	1126 1143	0.68	1164 1181	0.72	1202 1219	0.75 0.81	1240 1256	0.78	1276 1291	0.82	1311 1324	0.86	1345 1357	0.90
1900	1126	0.70	1163	0.74	1200	0.78	1237	0.88	1273	0.83	1306	0.09	1339	1.00	1371	1.04
2000	1148	0.77	1183	0.88	1220	0.65	1257	0.96	1273	1.00	1323	1.04	1354	1.00	1385	1.04
2100	1170	0.04	1206	0.86	1242	1.00	1277	1.04	1310	1.08	1340	1.13	1371	1.17	1401	1.12
2200	1195	1.00	1230	1.04	1265	1.08	1299	1.13	1330	1.18	1359	1.13	1388	1.17	1418	1.31
2300	1220	1.08	1254	1.13	1288	1.17	1320	1.13	1350	1.18	1378	1.34	1406	1.38	1435	1.42
2400	1245	1.18	1278	1.13	1311	1.28	1341	1.33	1370	1.40	1397	1.45	1425	1.50	1454	1.54
Z+UU	1240	1.10	1270	1.22	1311	1.20	1341	1.55	1370	1.40	1391	1.40	1420	1.50	1404	1.04

BLOWER DATA - BELT DRIVE - DOWNFLOW - KHA072

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).

			,				Exte	rnal Sta	atic - in.	w.g.						
Air	0.	10	0.	20	0.	30	0.4	40	0.	50	0.0	60	0.	70	0.8	80
Volume cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
				ı	Field Fu	rnished	t						Kit	A04		
1900	826	0.36	859	0.41	894	0.45	928	0.50	964	0.56	1000	0.61	1036	0.66	1072	0.70
2000	857	0.42	889	0.47	920	0.52	952	0.57	986	0.62	1020	0.68	1055	0.73	1091	0.77
2100	878	0.49	909	0.54	940	0.59	973	0.64	1006	0.70	1041	0.75	1076	0.80	1112	0.85
2200	897	0.55	929	0.61	961	0.66	994	0.72	1028	0.78	1063	0.83	1099	0.89	1134	0.93
2300	918	0.62	950	0.68	983	0.74	1017	0.80	1052	0.86	1087	0.92	1122	0.97	1157	1.02
2400	941	0.70	974	0.77	1008	0.83	1042	0.90	1077	0.96	1111	1.01	1146	1.06	1181	1.11
2500	966	0.79	1000	0.86	1034	0.93	1068	1.00	1103	1.06	1137	1.11	1171	1.16	1205	1.20
2600	994	0.90	1028	0.97	1062	1.04	1096	1.10	1130	1.16	1164	1.21	1197	1.26	1231	1.30
2700	1023	1.01	1057	1.08	1091	1.15	1125	1.22	1159	1.27	1192	1.32	1225	1.37	1258	1.41
2800	1053	1.13	1088	1.21	1122	1.27	1155	1.33	1188	1.39	1221	1.43	1253	1.48	1286	1.53
2900	1085	1.26	1119	1.33	1153	1.40	1186	1.45	1218	1.51	1250	1.55	1281	1.61	1313	1.66
							Exte	rnal Sta	atic - in.	w.g.						
Air Volume	0.	90	1.0	00	1.	10	1.3	20	1.3	30	1.4	40	1.5	50	1.0	60
cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
		r		1			Kit .	A04							Kit.	A08
1900	1109	0.75	4440						,						13167	
		0.73	1146	0.79	1183	0.82	1221	0.86	1260	0.90	1294	0.94	1323	0.98	1349	1.02
2000	1128	0.73	1146	0.79	1183 1201	0.82	1221 1239		1260 1276	0.90 0.97	1294 1310	0.94	1323 1336	0.98	_	1.02 1.10
2000	1128 1148							0.86							1349	
		0.82	1164	0.86	1201	0.89	1239	0.86 0.93	1276	0.97	1310	1.01	1336	1.06	1349 1362	1.10
2100	1148	0.82	1164 1185	0.86 0.93	1201 1221	0.89	1239 1258	0.86 0.93 1.01	1276 1294	0.97 1.05	1310 1325	1.01 1.09	1336 1351	1.06 1.14	1349 1362 1376	1.10
2100	1148 1170	0.82 0.89 0.97	1164 1185 1206	0.86 0.93 1.01	1201 1221 1242	0.89 0.97 1.05	1239 1258 1277	0.86 0.93 1.01 1.09	1276 1294 1311	0.97 1.05 1.14	1310 1325 1341	1.01 1.09 1.18	1336 1351 1365	1.06 1.14 1.23	1349 1362 1376 1390	1.10 1.19 1.28
2100 2200 2300	1148 1170 1193	0.82 0.89 0.97 1.06	1164 1185 1206 1228	0.86 0.93 1.01 1.09	1201 1221 1242 1262	0.89 0.97 1.05 1.14	1239 1258 1277 1295	0.86 0.93 1.01 1.09 1.19	1276 1294 1311 1327	0.97 1.05 1.14 1.24	1310 1325 1341 1355	1.01 1.09 1.18 1.29	1336 1351 1365 1380	1.06 1.14 1.23 1.33	1349 1362 1376 1390 1406	1.10 1.19 1.28 1.37
2100 2200 2300 2400	1148 1170 1193 1216	0.82 0.89 0.97 1.06 1.15	1164 1185 1206 1228 1250	0.86 0.93 1.01 1.09 1.19	1201 1221 1242 1262 1282	0.89 0.97 1.05 1.14 1.24	1239 1258 1277 1295 1313	0.86 0.93 1.01 1.09 1.19 1.30	1276 1294 1311 1327 1343	0.97 1.05 1.14 1.24 1.36	1310 1325 1341 1355 1371	1.01 1.09 1.18 1.29 1.40	1336 1351 1365 1380 1396	1.06 1.14 1.23 1.33 1.44	1349 1362 1376 1390 1406 1423	1.10 1.19 1.28 1.37 1.48
2100 2200 2300 2400 2500	1148 1170 1193 1216 1240	0.82 0.89 0.97 1.06 1.15	1164 1185 1206 1228 1250 1273	0.86 0.93 1.01 1.09 1.19 1.29	1201 1221 1242 1262 1282 1302	0.89 0.97 1.05 1.14 1.24 1.36	1239 1258 1277 1295 1313 1331	0.86 0.93 1.01 1.09 1.19 1.30 1.42	1276 1294 1311 1327 1343 1360	0.97 1.05 1.14 1.24 1.36 1.48	1310 1325 1341 1355 1371 1388	1.01 1.09 1.18 1.29 1.40 1.52	1336 1351 1365 1380 1396 1414	1.06 1.14 1.23 1.33 1.44 1.55	1349 1362 1376 1390 1406 1423 1441	1.10 1.19 1.28 1.37 1.48 1.58
2100 2200 2300 2400 2500 2600	1148 1170 1193 1216 1240 1265	0.82 0.89 0.97 1.06 1.15 1.24	1164 1185 1206 1228 1250 1273 1296	0.86 0.93 1.01 1.09 1.19 1.29 1.40	1201 1221 1242 1262 1282 1302 1324	0.89 0.97 1.05 1.14 1.24 1.36 1.47	1239 1258 1277 1295 1313 1331 1352	0.86 0.93 1.01 1.09 1.19 1.30 1.42	1276 1294 1311 1327 1343 1360 1381	0.97 1.05 1.14 1.24 1.36 1.48 1.60	1310 1325 1341 1355 1371 1388 1408	1.01 1.09 1.18 1.29 1.40 1.52 1.64	1336 1351 1365 1380 1396 1414 1434	1.06 1.14 1.23 1.33 1.44 1.55 1.67	1349 1362 1376 1390 1406 1423 1441 1460	1.10 1.19 1.28 1.37 1.48 1.58 1.70

BLOWER DATA - BELT DRIVE - HORIZONTAL - KHA072

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE.

FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).

							Exte	rnal Sta	atic - in.	w.g.						
Air	0.	10	0.	20	0.	30	0.	40	0.	50	0.	60	0.	70	0.	80
Volume cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
• • • • • • • • • • • • • • • • • • • •			ı	Field Fu	irnished	d		•				Kit	A04			•
1900	853	0.41	886	0.46	919	0.50	952	0.55	986	0.60	1021	0.64	1056	0.69	1091	0.73
2000	883	0.48	913	0.53	944	0.57	976	0.62	1009	0.67	1043	0.71	1078	0.76	1112	0.80
2100	906	0.56	936	0.60	967	0.65	999	0.70	1033	0.75	1067	0.79	1101	0.84	1135	0.88
2200	930	0.64	960	0.68	991	0.73	1024	0.78	1058	0.83	1092	0.88	1126	0.92	1160	0.96
2300	954	0.72	985	0.77	1017	0.82	1051	0.87	1085	0.92	1119	0.96	1152	1.00	1186	1.04
2400	981	0.81	1013	0.86	1046	0.91	1079	0.96	1113	1.00	1146	1.05	1180	1.09	1213	1.13
2500	1010	0.91	1042	0.96	1075	1.00	1109	1.05	1142	1.09	1175	1.14	1207	1.18	1239	1.23
2600	1040	1.01	1073	1.05	1106	1.10	1139	1.14	1171	1.19	1203	1.23	1235	1.28	1266	1.33
2700	1072	1.10	1104	1.15	1137	1.20	1169	1.24	1201	1.29	1232	1.34	1263	1.40	1293	1.46
2800	1105	1.21	1137	1.25	1168	1.30	1200	1.35	1231	1.40	1261	1.46	1291	1.52	1321	1.59
2900	1138	1.32	1169	1.37	1200	1.42	1231	1.47	1261	1.53	1291	1.60	1321	1.66	1350	1.73
							Exte	rnal Sta	atic - in.	w.g.						
Air Volume	0.9	90	1.	00	1.	10	1.3	20	1.3	30	1.4	40	1.	50	1.	60
cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
							Kit	A04							Kit.	A08
1900	1126	0.77	1163	0.81	1200	0.85	1237	0.88	1273	0.92	1306	0.96	1339	1.00	1371	1.04
2000	1148	0.84	1183	0.88	1220	0.92	1257	0.96	1291	1.00	1323	1.04	1354	1.08	1385	1.12
2100	1170	0.92	1206	0.96	1242	1.00	1277	1.04	1310	1.08	1340	1.13	1371	1.17	1401	1.21
2200	1195	1.00	1230	1.04	1265	1.08	1299	1.13	1330	1.18	1359	1.23	1388	1.27	1418	1.31
2300	1220	1.08	1254	1.13	1288	1.17	1320	1.23	1350	1.28	1378	1.34	1406	1.38	1435	1.42
2400	1245	1.18	1278	1.22	1311	1.28	1341	1.33	1370	1.40	1397	1.45	1425	1.50	1454	1.54
2500	1271	1.28	1303	1.33	1334	1.39	1363	1.45	1391	1.52	1418	1.57	1446	1.62	1474	1.66
2600	1297	1.39	1328	1.45	1357	1.52	1385	1.58	1412	1.64	1439	1.70	1467	1.74	1495	1.78
2700	1323	1.52	1353	1.58	1382	1.65	1409	1.72	1435	1.77	1462	1.82	1490	1.86	1517	1.90
2800	1351	1.65	1380	1.72	1407	1.78	1434	1.85	1460	1.90	1486	1.95	1513	1.99	1541	2.02
2900	1379	1.79	1407	1.86	1434	1.92	1460	1.98	1485	2.04	1511	2.08	1538	2.12	1565	2.15

BLOWER DATA - BELT DRIVE - DOWNFLOW - KHB074

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).

2 - Any field installed accessories air resistance (duct resistance, diffuser, etc.).
See page 22 for blower motors and drives and page 23 for wet coil and options/accessory air resistance data.

					•	,	Exte	rnal Sta	atic - in.	w.g.						
Air Volume	0.	10	0.2	20	0.	30	0.	40	0.	50	0.0	60	0.	70	0.8	80
cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
				ı	Field Fu	ırnished	d						Kit	A04		
1900	826	0.36	859	0.41	894	0.45	928	0.50	964	0.56	1000	0.61	1036	0.66	1072	0.70
2000	857	0.42	889	0.47	920	0.52	952	0.57	986	0.62	1020	0.68	1055	0.73	1091	0.77
2100	878	0.49	909	0.54	940	0.59	973	0.64	1006	0.70	1041	0.75	1076	0.80	1112	0.85
2200	897	0.55	929	0.61	961	0.66	994	0.72	1028	0.78	1063	0.83	1099	0.89	1134	0.93
2300	918	0.62	950	0.68	983	0.74	1017	0.80	1052	0.86	1087	0.92	1122	0.97	1157	1.02
2400	941	0.70	974	0.77	1008	0.83	1042	0.90	1077	0.96	1111	1.01	1146	1.06	1181	1.11
2500	966	0.79	1000	0.86	1034	0.93	1068	1.00	1103	1.06	1137	1.11	1171	1.16	1205	1.20
2600	994	0.90	1028	0.97	1062	1.04	1096	1.10	1130	1.16	1164	1.21	1197	1.26	1231	1.30
2700	1023	1.01	1057	1.08	1091	1.15	1125	1.22	1159	1.27	1192	1.32	1225	1.37	1258	1.41
2800	1053	1.13	1088	1.21	1122	1.27	1155	1.33	1188	1.39	1221	1.43	1253	1.48	1286	1.53
2900	1085	1.26	1119	1.33	1153	1.40	1186	1.45	1218	1.51	1250	1.55	1281	1.61	1313	1.66
							Exte	rnal Sta	atic - in.	w.g.						
Air Volume	0.9	90	1.0	00	1.	10	1.	20	1.3	30	1.4	40	1.	50	1.0	60
cfm	RPM	ВНР	RPM	BHP	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР
							Kit	A04							Kit .	A08
1900	1109	0.75	1146	0.79	1183	0.82	1221	0.86	1260	0.90	1294	0.94	1323	0.98	1349	1.02
2000	1128	0.82	1164	0.86	1201	0.89	1239	0.93	1276	0.97	1310	1.01	1336	1.06	1362	1.10
2100	1148	0.89	1185	0.93	1221	0.97	1258	1.01	1294	1.05	1325	1.09	1351	1.14	1376	1.19
2200	1170	0.97	1206	1.01	1242	1.05	1277	1.09	1311	1.14	1341	1.18	1365	1.23	1390	1.28
2300	1193	1.06	1228	1.09	1262	1.14	1295	1.19	1327	1.24	1355	1.29	1380	1.33	1406	1.37
2400	1216	1.15	1250	1.19	1282	1.24	1313	1.30	1343	1.36	1371	1.40	1396	1.44	1423	1.48
2500	1240	1.24	1273	1.29	1302	1.36	1331	1.42	1360	1.48	1388	1.52	1414	1.55	1441	1.58
2600	1265	1.34	1296	1.40	1324	1.47	1352	1.54	1381	1.60	1408	1.64	1434	1.67	1460	1.70
2700	1291	1.46	1321	1.52	1347	1.60	1374	1.67	1403	1.72	1429	1.76	1455	1.79	1481	1.82
2800	1317	1.58	1346	1.66	1372	1.74	1399	1.80	1426	1.85	1451	1.89	1477	1.92	1503	1.95
2900	1343	1.72	1371	1.80	1397	1.88	1424	1.95	1450	1.99	1475	2.02	1500	2.05	1526	2.08

BLOWER DATA - BELT DRIVE - HORIZONTAL - KHB074

BLOWER TABLE INCLUDES RESISTANCE FOR BASE UNIT ONLY WITH DRY INDOOR COIL AND AIR FILTERS IN PLACE. FOR ALL UNITS ADD:

- 1 Any factory installed options air resistance (economizer, wet coil, etc.).
- 2 Any field installed accessories air resistance (duct resistance, diffuser, etc.).

- Coo page					<u> </u>				itic - in.								
Air	0.	10	0.	20	0.	30	1	40	0.		0.	60	0.	70	0.80		
Volume cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	
Oiiii			-	Field Fu	rnished	d		,				Kit	A04				
1900	853	0.41	886	0.46	919	0.50	952	0.55	986	0.60	1021	0.64	1056	0.69	1091	0.73	
2000	883	0.48	913	0.53	944	0.57	976	0.62	1009	0.67	1043	0.71	1078	0.76	1112	0.80	
2100	906	0.56	936	0.60	967	0.65	999	0.70	1033	0.75	1067	0.79	1101	0.84	1135	0.88	
2200	930	0.64	960	0.68	991	0.73	1024	0.78	1058	0.83	1092	0.88	1126	0.92	1160	0.96	
2300	954	0.72	985	0.77	1017	0.82	1051	0.87	1085	0.92	1119	0.96	1152	1.00	1186	1.04	
2400	981	0.81	1013	0.86	1046	0.91	1079	0.96	1113	1.00	1146	1.05	1180	1.09	1213	1.13	
2500	1010	0.91	1042	0.96	1075	1.00	1109	1.05	1142	1.09	1175	1.14	1207	1.18	1239	1.23	
2600	1040	1.01	1073	1.05	1106	1.10	1139	1.14	1171	1.19	1203	1.23	1235	1.28	1266	1.33	
2700	1072	1.10	1104	1.15	1137	1.20	1169	1.24	1201	1.29	1232	1.34	1263	1.40	1293	1.46	
2800	1105	1.21	1137	1.25	1168	1.30	1200	1.35	1231	1.40	1261	1.46	1291	1.52	1321	1.59	
2900	1138	1.32	1169	1.37	1200	1.42	1231	1.47	1261	1.53	1291	1.60	1321	1.66	1350	1.73	
							Exte	rnal Sta	itic - in.	w.g.							
Air Volume	0.9	90	1.	00	1.	10	1.3	20	1.30			40	1.	50	1.60		
cfm	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	ВНР	
							_	A04	04						Kit A08		
1900	1126	0.77	1163	0.81	1200	0.85	1237	0.88	1273	0.92	1306	0.96	1339	1.00	1371	1.04	
2000	1148	0.84	1183	0.88	1220	0.92	1257	0.96	1291	1.00	1323	1.04	1354	1.08	1385	1.12	
2100	1170	0.92	1206	0.96	1242	1.00	1277	1.04	1310	1.08	1340	1.13	1371	1.17	1401	1.21	
2200	1195	1.00	1230	1.04	1265	1.08	1299	1.13	1330	1.18	1359	1.23	1388	1.27	1418	1.31	
2300	1220	1.08	1254	1.13	1288	1.17	1320	1.23	1350	1.28	1378	1.34	1406	1.38	1435	1.42	
2400	1245	1.18	1278	1.22	1311	1.28	1341	1.33	1370	1.40	1397	1.45	1425	1.50	1454	1.54	
2500	1271	1.28	1303	1.33	1334	1.39	1363	1.45	1391	1.52	1418	1.57	1446	1.62	1474	1.66	
2600	1297	1.39	1328	1.45	1357	1.52	1385	1.58	1412	1.64	1439	1.70	1467	1.74	1495	1.78	
2700	1323	1.52	1353	1.58	1382	1.65	1409	1.72	1435	1.77	1462	1.82	1490	1.86	1517	1.90	
2800	1351	1.65	1380	1.72	1407	1.78	1434	1.85	1460	1.90	1486	1.95	1513	1.99	1541	2.02	
2900	1379	1.79	1407	1.86	1434	1.92	1460	1.98	1485	2.04	1511	2.08	1538	2.12	1565	2.15	

BLOWER DATA

BELT DRIVE KIT SPECIFICATIONS - 036-074

Model	Mot	or HP	No. of	3											
No.	Nominal	Maximum	Speeds	A01	A02	A03	A04	A05	A06	A07	A08				
036	0.75	0.86	1	673-1010				897-1346							
	1	1.15	1	673-1010				897-1346							
	1.5	1.7	1	673-1010				897-1346							
	2	2.3	1	673-1010				897-1346							
048	0.75	0.86	1		745-1117				1071-1429						
	1	1.15	1		745-1117				1071-1429						
	1.5	1.7	1		745-1117				1071-1429						
	2	2.3	1		745-1117				1071-1429						
060	0.75	0.86	1			833-1250				1212-1548					
	1	1.15	1			833-1250				1212-1548					
	1.5	1.7	1			833-1250				1212-1548					
	2	2.3	1			833-1250				1212-1548					
072	1	1.5	1				968-1340				1193-1591				
	2	2.3	1				968-1340				1193-1591				
074	1	1.5	2				968-1340				1193-1591				
	2	2.3	2				968-1340				1193-1591				

NOTE - Using total air volume and system static pressure requirements determine from blower performance tables rpm and motor hp required. Maximum usable hp of motors furnished are shown. In Canada, nominal motor hp is also maximum usable motor hp. If motors of comparable hp are used, be sure to keep within the service factor limitations outlined on the motor nameplate.

OPTIONS / ACCESSORIES AIR RESISTANCE - in. w.g.

Air Volume	Wet Indo	or Coil	Economizer	Electric	Filters			
cfm	024, 030, 036, 048	060, 072, 074	Economizer	Heat	MERV 8	MERV 13		
800	0.01	0.01	0.04	0.01	0.04	0.05		
1000	0.02	0.01	0.04	0.03	0.04	0.07		
1200	0.02	0.01	0.04	0.06	0.04	0.07		
1400	0.03	0.02	0.04	0.09	0.04	0.07		
1600	0.04	0.03	0.04	0.12	0.04	0.07		
1800	0.05	0.04	0.05	0.15	0.05	0.07		
2000	0.06	0.05	0.05	0.18	0.05	0.08		
2200	0.08	0.06	0.05	0.20	0.05	0.08		
2400	0.09	0.07	0.05	0.22	0.05	0.08		
2600	0.10	0.08	0.06	0.24	0.05	0.08		
2800	0.11	0.09	0.06	0.26	0.05	0.08		
3000	0.13	0.10	0.06	0.28	0.05	0.08		

BLOWER DATA

CEILING DIFFUSERS AIR RESISTANCE (in. w.g.)

Air Volume	RTD	9-65 Step-Dowi	n Diffuser	FD9-65	RTD1	1-95S Step-Dow	n Diffuser	FD11-95S		
cfm	2 Ends	1 Side &	All Ends &	Flush	2 Ends	1 Side &	All Ends &	Flush		
	Open	2 Ends Open	Sides Open	Diffuser	Open	2 Ends Open	Sides Open	Diffuser		
800	0.15	0.13	0.11	0.11						
1000	0.19	0.16	0.14	0.14						
1200	0.25	0.20	0.17	0.17						
1400	0.33	0.26	0.20	0.20						
1600	0.43	0.32	0.20	0.24						
1800	0.56	0.40	0.30	0.30	0.13	0.11	0.09	0.09		
2000	0.73	0.50	0.36	0.36	0.15	0.13	0.11	0.10		
2200	0.95	0.63	0.44	0.44	0.18	0.15	0.12	0.12		
2400					0.21	0.18	0.15	0.14		
2600					0.24	0.21	0.18	0.17		
2800					0.27	0.24	0.21	0.20		
3000					0.32	0.29	0.25	0.25		

CEILING DIFFUSER AIR THROW DATA

1 Effective	Throw - ft.
RTD9-65	FD9-65
10 - 17	14 - 18
10 - 17	15 - 20
11 - 18	16 - 22
12 - 19	17 - 24
12 - 20	18 - 25
13 - 21	20 - 28
14 - 23	21 - 29
16 - 25	22 - 30
RTD11-95S	FD11-95S
24 - 29	19 - 24
25 - 30	20 - 28
27 - 33	21 - 29
	RTD9-65 10 - 17 10 - 17 11 - 18 12 - 19 12 - 20 13 - 21 14 - 23 16 - 25 RTD11-95S 24 - 29 25 - 30

¹ Effective throw based on terminal velocities of 75 ft. per minute.

POWER EXHAUST FAN PERFORMANCE

Return Air System Static Pressure - in. w.g.	Air Volume Exhausted cfm
0.00	2000
0.05	1990
0.10	1924
0.15	1810
0.20	1664
0.25	1507
0.30	1350
0.35	1210

OUTDOOR SOU	OUTDOOR SOUND DATA 1 Unit Octave Band Linear Sound Power Levels dBA, re 10-12 Watts - Center Frequency 1 Sound Rating												
¹ Unit Model No.	Octave Ba	Octave Band Linear Sound Power Levels dBA, re 10 ⁻¹² Watts - Center Frequency											
	125	250	500	1000	2000	4000	8000	(dBA)					
KHA036 and 048	63	66	70	71	68	62	53	75					
KHB024, 030, 036	62	67	72	69	66	61	56	75					
KHB048	61	67	70	70	68	63	56	75					
KHA060	67	72	77	76	73	68	61	82					
KHB060	69	72	75	74	70	65	55	80					
KHA072	67	75	78	78	75	68	59	83					
KHB074	67	75	78	78	75	68	59	83					

Note - The octave sound power data does not include tonal corrections.

¹ Sound Rating Number according to ARI Standard 270-95 (includes pure tone penalty). "SRN" is the overall A-Weighted Sound Power Level, (LWA), dBA (100 Hz to 10,000 Hz).

ELECTRIC	AL/ELECTRIC	HEAT	DATA - KHB			2 - 2.5 TON		
DIRECT DRIVE	BLOWER		КН	B024S	KHE	3030S		
¹ Voltage - 60hz	Z		208/23	80V - 1 Ph	208/230	0V - 1 Ph		
Compressor 1	Rated Lo	oad Amps		9.8	1.	2.7		
	Locked Ro	otor Amps		47	(64		
Outdoor Fan Motors (1)	Full Load An	nps (total)		1.7		1.7		
Service Outlet 1	15V GFI (amps)			15		15		
Indoor Blower	Но	rsepower	(0.25	0	.25		
Motor		Type	D	Pirect	Di	rect		
	Full Lo	oad Amps		1.8	1	1.8		
² Maximum Overcurrent Protection		Unit Only		25	30			
³ Minimum Circuit Ampacity		Unit Only		16	2	20		
ELECTRIC	HEAT DATA				'			
Electric Heat Vo	oltage		208V	240V	208V	240V		
² Maximum	Unit +	5 kW	40	45	50	50		
Overcurrent	Electric Heat	7.5 kW	50	60	60	60		
Protection		10 kW	70	70	70	80		
³ Minimum	Unit +	5 kW	39	42	42	46		
Circuit	Electric Heat	7.5 kW	50	55	54	59		
Ampacity		10 kW	61	68	65	72		
ELECTRICA	AL ACCESSORIE	S		1				
Disconnect	Standard Access -	0-10 kW	20W15	20W15	20W15	20W15		
	Hinged Access -	0-10 kW	20W21	20W21	20W21	20W21		

¹ Extremes of operating range are plus and minus 10% of line voltage.

 $^{^{\}rm 2}$ HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

3 TON

KHB036S - DIRECT DRIVE BOWER

Voltage - 60hz		208/23	0V - 1 Ph	208/23	0V - 3 Ph	460V - 3 Ph	575V - 3 Ph
Compressor	Rated Load Amps	1	5.3	3	3.7	4	3.6
	Locked Rotor Amps		70		70	31	27
Outdoor Fan Motors (1)	Full Load Amps (total)		1.7	1	1.7	1.1	0.7
Power Exhaust (1) 0.33 HP	Full Load Amps (total)		2.4	2	2.4	1.3	1
Service Outlet	115V GFI (amps)		15		15	15	20
Indoor Blower	Horsepower		0.5	().5	0.5	0.5
Motor	Туре	D	irect	Di	rect	Direct	Direct
	Full Load Amps		3.9	3	3.9	2	2
² Maximum	Unit Only	40		:	25	15	15
Overcurrent Protection	with (1) 0.33 HP Power Exhaust		40	:	25	15	15
³ Minimum	Unit Only	25			17	9	8
Circuit Ampacity	with (1) 0.33 HP Power Exhaust	28			19	10	9
ELECTRIC	HEAT DATA			'		'	'
Electric Heat \	/oltage	208V	240V	208V	240V	480V	600V
² Maximum	Unit + 7.5 kW	60	70	40	40	20	20
Overcurrent Protection	Electric Heat 15 kW	100	110	60	70	35	30
³ Minimum	Unit + 7.5 kW	59	64	37	40	20	17
Circuit Ampacity	Electric Heat 15 kW	93	103	56	62	31	26
² Maximum	Unit + 7.5 kW	70	70	40	45	25	20
Overcurrent Protection	Electric Heat + 15 kW Power Exhaust	100	110	60	70	35	30
³ Minimum	Unit + 7.5 kW	61	67	39	42	21	18
Circuit Ampacity	Electric Heat + Power Exhaust	95	106	58	64	32	27
ELECTRICA	AL ACCESSORIES						
Disconnect	Standard Access - 0-7.5 kW	20	W15	20	W15	20W15	20W15
	15 kW	20	W16	20	W15	20W15	20W15
	Hinged Access - 0-7.5 kW	20	W21	20	W21	20W21	20W21
	15 kW	20	W22	20	W21	20W21	20W21

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

4 TON

KHB048S - DIRECT DRIVE BOWER

¹ Voltage - 60h	ız	208/23	0V - 1 Ph	208/230	OV - 3 Ph	460V - 3 Ph	575V - 3 Ph
Compressor	Rated Load Amps		20		11	5.5	4.7
	Locked Rotor Amps		99	3	86		34
Outdoor Fan Motors (1)	Full Load Amps (total)	,	1.7	1	.7	1.1	0.7
Power Exhaust (1) 0.33 HP	Full Load Amps (total)	2	2.4	2	2.4	1.3	1
Service Outlet	115V GFI (amps)		15	,	15	15	20
Indoor Blower	Horsepower	(0.5	C).5	0.5	0.5
Motor	Туре	D	irect	Di	rect	Direct	Direct
	Full Load Amps	;	3.9	3	3.9	2	2
² Maximum	Unit Only		50		30	15	15
Overcurrent Protection	with (1) 0.33 HP Power Exhaust		50	;	30	15	15
³ Minimum	Unit Only		31	2	20	10	9
Circuit Ampacity	with (1) 0.33 HP Power Exhaust	33		2	22	12	10
ELECTRIC	HEAT DATA						
Electric Heat	Voltage	208V	240V	208V	240V	480V	600V
² Maximum	Unit + 7.5 kW	70	80	45	45	25	20
Overcurrent Protection	Electric Heat 15 kW	100	110	60	70	35	30
³ Minimum	Unit + 7.5 kW	65	70	39	42	22	18
Circuit Ampacity	Electric Heat 15 kW	99	109	59	65	33	27
² Maximum	Unit + 7.5 kW	80	80	45	50	25	20
Overcurrent Protection	Electric Heat + Power Exhaust	110	125	70	70	35	30
³ Minimum	Unit + 7.5 kW	67	73	42	45	23	19
Circuit Ampacity	Electric Heat + Power Exhaust	101	112	61	67	34	28
ELECTRIC	AL ACCESSORIES						
Disconnect	Standard Access - 0-7.5 kW	20	W18	20	W18	20W18	20W18
	15 kW	20	W19	20	W18	20W18	20W18
	Hinged Access - 0-7.5 kW	20	W24	20	W24	20W24	20W24
	15 kW	20	W25	20	W24	20W24	20W24

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

KHB036S - BELT DRIVE BLOWER

¹ Voltage - 60h	ız		208/230V - 1 Ph				208/230V - 3 Ph				460V	- 3 Ph	575V - 3 Ph	
Compressor	Rated Loa	ad Amps		15	5.3			8	.7		4		3.6	
	Locked Rote	or Amps		7	0		-		70		31		27	
Outdoor Fan Motors (1)	Full Load Amp	os (total)		1	.7				.7		1.1		0	.7
Power Exhaust (1) 0.33 HP	Full Load Amp	os (total)		2	.4			2.4			1.3		1	
Service Outlet	115V GFI (amps)		15				1	5		1	5	2	20	
Indoor Blower			0.	75	1	.5		1	2	2	1	2	1	2
Motor			В	elt	В	elt	В	elt	В	elt	Belt	Belt	Belt	Belt
Full Load Am		ad Amps	7	.6	1	1	4	.6	7	.5	2.1	3.4	1.7	2.7
² Maximum	Unit Only		4	.0	4	ļ5	2	25	2	25	15	15	15	15
Overcurrent Protection		with (1) 0.33 HP Power Exhaust		·5	4	ŀ5	2	25	3	30	15	15	15	15
³ Minimum	U	Unit Only		.9	3	32	18		21		9	10	7	8
Circuit Ampacity		with (1) 0.33 HP Power Exhaust		1	35		20		23		10	11	8	9
ELECTRIC	HEAT DATA								'					
Electric Heat \	Voltage		208V	240V	208V	240V	208V	240V	208V	240V	480V	480V	600V	600V
² Maximum	Unit +	7.5 kW	60	70	70	80	40	40	40	45	20	25	20	20
Overcurrent Protection	Electric Heat	15 kW	100	110	100	110	60	70	60	70	35	35	25	30
³ Minimum		7.5 kW	63	68	66	71	37	40	40	43	20	21	16	17
Circuit Ampacity	Electric Heat	15 kW	97	107	100	110	57	63	60	66	31	33	25	26
² Maximum		7.5 kW	70	70	70	80	40	45	45	50	25	25	20	20
Overcurrent Protection	Electric Heat + Power Exhaust	15 kW	100	110	110	125	60	70	70	70	35	35	30	30
³ Minimum	Unit +	7.5 kW	65	70	69	74	40	43	43	46	21	23	17	18
Circuit Ampacity	Electric Heat + Power Exhaust	15 kW	99	109	102	113	59	65	62	68	33	34	26	27
ELECTRICA	AL ACCESSORIE	ES												
Disconnect	Standard Access - 0	-7.5 kW		20V	V15		201	W15	20V	N15	20V	V15	20V	N15
Disconnect					20W15		20W15		20W15		20W15			
Disconnect		15 kW		20V	V16		201	VIS	201	W 15	200	V15	200	
Disconnect	Hinged Access - 0				V16 V21		_	N21	_	N21	20V		-	N21

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

4 TON

KHB048S - BELT DRIVE BLOWER

¹ Voltage - 60h	¹ Voltage - 60hz			208/230V - 1 Ph			208/230V - 3 Ph				- 3 Ph	575V - 3 Ph	
Compressor	Rated Load Amp	s	20			11				5	.5	4.7	
	Locked Rotor Amp	s	99			86				37		34	
Outdoor Fan Motors (1)	Full Load Amps (tota)	1.7				1	.7		1	.1	0	.7
Power Exhaust (1) 0.33 HP	Full Load Amps (tota)	2.4				2	.4		1	.3		1
Service Outlet	115V GFI (amps)		15				1	5		1	5	2	20
Indoor Blower	•		.75	1	.5		1	:	2	1	2	1	2
Motor	Type Full Load Amps		elt	В	elt	В	elt	В	elt	Belt	Belt	Belt	Belt
			7.6	1	11	4	.6	7	.5	2.1	3.4	1.7	2.7
² Maximum	Unit Onl	y !	50	5	50	3	0	3	80	15	15	15	15
Overcurrent Protection	with (1) 0.33 H Power Exhaus		50	6	60	3	0	3	35	15	15	15	15
³ Minimum	Unit Onl	y :	35		38	2	1	23		11	12	9	10
Circuit Ampacity	with (1) 0.33 H Power Exhaus		37 41		23 26		12	13	10	11			
ELECTRIC	HEAT DATA												
Electric Heat	Voltage	208V	240V	208V	240V	208V	240V	208V	240V	480V	480V	600V	600V
² Maximum	Unit + 7.5 kV	V 80	80	80	80	45	45	45	50	25	25	20	20
Overcurrent Protection	Electric Heat 15 kV	110	125	110	125	60	70	70	70	35	35	30	30
³ Minimum	Unit + 7.5 kV	V 69	74	72	77	40	43	43	46	22	23	18	19
Circuit Ampacity	Electric Heat 15 kV	103	113	106	116	60	66	63	69	33	34	27	28
² Maximum	Unit + 7.5 kV	V 80	80	80	90	45	50	50	50	25	25	20	20
Overcurrent Protection	Electric Heat + 15 kV Power Exhaust	100	110	110	125	70	70	70	80	35	40	30	30
³ Minimum	Unit + 7.5 kV	V 71	76	74	80	42	46	45	48	23	24	19	20
Circuit Ampacity	Electric Heat + 15 kV Power Exhaust	105	115	108	119	62	68	65	71	34	36	28	29
ELECTRIC	AL ACCESSORIES												
Disconnect	Standard Access - 0-7.5 kV	V	20\	N 18		201	V18	20W18		201	V18	201	V18
	15 kV	V	20W19			20W18 20W18		20W18		20W18			
	Hinged Access - 0-7.5 kV	V	20W24			20W24 20W24			20W24		20W24		
	15 kV	v .	20W25			20W24 20W24			201	V24	20W24		

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

5 TON

KHB060S - BELT DRIVE BLOWER

¹ Voltage - 60h	Z		2	208/230	V - 1 P	h	2	208/230	V - 3 P	h	460V	- 3 Ph	575V	- 3 Ph
Compressor	Rated Lo	ad Amps		22	2.1			13	3.5		8	3	5	
	Locked Ro	tor Amps		1:	25			10	09		5	9	4	0
Outdoor Fan Motors (1)	Full Load Am	ps (total)		2	.4		2.4				1.3		1	
Power Exhaust (1) 0.33 HP	Full Load Am	ps (total)		2	.4			2	.4		1	.3	1	
Service Outlet	Service Outlet 115V GFI (amps)			1	5			1	5		1	5	2	20
Indoor Blower	Hoi	Horsepower Type		75	1	.5		1	2	2	1	2	1	2
Motor				elt	В	elt	В	elt	В	elt	Belt	Belt	Belt	Belt
	Full Lo	ad Amps	7	.6	1	1	4	.6	7	.5	2.1	3.4	1.7	2.7
² Maximum	ı	Unit Only	5	0	6	0	3	35	4	.0	20	20	15	15
Overcurrent Protection		0.33 HP Exhaust	6	0	6	0	3	35	4	.0	20	20	15	15
³ Minimum	I	Unit Only	3	8	4	2	2	24	2	7	14	15	9	10
Circuit Ampacity		0.33 HP Exhaust	4	1	4	4	2	27	3	0	15	16	10	11
ELECTRIC	HEAT DATA				'		'		'		'	'		'
Electric Heat V	/oltage		208V	240V	208V	240V	208V	240V	208V	240V	480V	480V	600V	600V
² Maximum	Unit +	7.5 kW	80	90	90	90	50	50	50	50	30	30	20	20
Overcurrent	Electric Heat	15 kW	110	125	110	125	70	70	70	80	40	40	30	30
Protection		22.5 kW	150	175	150	175	90	100	90	100	50	50	40	40
³ Minimum	Unit +	7.5 kW	72	77	75	81	44	47	47	50	25	26	18	19
Circuit	Electric Heat	15 kW	106	116	109	120	63	69	66	72	36	38	27	28
Ampacity		22.5 kW	140	155	143	159	83	92	86	95	48	49	37	38
² Maximum	Unit +	7.5 kW	80	90	90	90	50	50	50	60	30	30	20	20
Overcurrent	Electric Heat +	15 kW	110	125	125	125	70	80	70	80	40	40	30	30
Protection	Power Exhaust	22.5 kW	150	175	150	175	90	100	90	100	50	50	40	40
³ Minimum	Unit +	7.5 kW	74	80	78	83	46	49	49	52	26	28	19	20
Circuit	Electric Heat +	15 kW	108	119	112	122	66	72	69	75	38	39	28	29
Ampacity	Power Exhaust	22.5 kW	142	158	145	161	85	94	88	97	49	50	38	39
ELECTRIC/	AL ACCESSORII	ES										•		
Disconnect	Standard Access -	0-7.5 kW	201	V19	201	V18	201	W18	20V	V18	201	V18	20V	V18
		15 kW	201	V19	201	V19	201	W18	201	V18	201	V18	20V	W18
		22.5 kW	201	V19	N	/A	201	W19	20V	V19	201	V18	20V	V18
	Hinged Access -	0-7.5 kW	201	N25	201	V24	201	N24	20V	V24	201	V24	20V	N24
		15 kW	201	N25	201	V25	201	N24	20V	V24	201	V24	20V	N24
		22.5 kW	201	N25	N	/A	20W25 20W25		201	V24				

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

6 TON

KHB074S - BELT DRIVE BLOWER

1 Voltage - 60hz				208/23	0V - 3 Ph		460V	- 3 Ph	575V - 3 Ph		
Compressor	Rated L	oad Amps		1	7.6		8	.5	6.3		
	Locked R	otor Amps		1	36		66	5.1	55.3		
Outdoor Fan Motor	Full L	oad Amps			3		1	.5	1.2		
Power Exhaust (1) 0.33 HP	Full L	oad Amps		2	2.4		1	.3	1		
Service Outlet 115	5V GFI (amps)		15				1	5	2	20	
Indoor Blower	Ho	Horsepower		1		2	1 2		1	2	
Motor		В	elt	В	elt	Belt	Belt	Belt	Belt		
	Full L	Full Load Amps			7	.5	2.1	3.4	1.7	2.7	
² Maximum		Unit Only	4	5	5	50	20	20	15	15	
Overcurrent Protection		l) 0.33 HP er Exhaust	4	5	5	50	20	25	15	15	
³ Minimum		Unit Only		30	3	33	15	16	11	12	
Circuit Ampacity		With (1) 0.33 HP Power Exhaust		32	35		16	17	12	13	
ELECTRIC	HEAT DATA										
Electric Heat Vol	tage		208	240	208	240	480	480	600	600	
² Maximum	Unit+	7.5 kW	60	60	60	60	30	30	20	25	
Overcurrent	Electric Heat	15 kW	70	80	80	80	40	40	30	30	
Protection		22.5 kW	90	100	100	110	50	50	40	40	
		30 kW	110	125	125	125	60	70	50	50	
³ Minimum	Unit+	7.5 kW	50	53	53	56	26	27	20	21	
Circuit Ampacity	Electric Heat	15 kW	69	75	72	78	37	39	29	30	
Ampacity		22.5 kW	89	98	92	101	49	50	38	39	
		30 kW	108	120	111	123	60	61	47	48	
² Maximum	Unit+	7.5 kW	60	60	60	70	30	30	25	25	
Overcurrent Protection	Electric Heat and (1) 0.33 HP	15 kW	80	80	80	90	40	40	30	35	
Trotection	Power Exhaust	22.5 kW	100	100	100	110	50	60	40	40	
		30 kW	125	125	125	150	70	70	50	50	
³ Minimum	Unit+	7.5 kW	52	55	55	58	27	29	21	22	
Circuit Ampacity	Electric Heat and (1) 0.33 HP	15 kW	72	78	74	81	39	40	30	31	
ranpaoity	Power Exhaust	22.5 kW	91	100	94	103	50	51	39	40	
		30 kW	111	123	114	126	61	62	48	49	
ELECTRICA	AL ACCESSOR	RIES									
Disconnect	Standard Access	- 0 - 15 kW	20V	N18	20\	W18	20\	W18	20\	V18	
Kit -		2.5-30 kW		W19		N19	-	N18		W18	
	Hinged Access			N24		N24		20W24		20W24	
	2:	2.5-30 kW	20\	N25	20\	N25	20\	N24	20W24		

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

3 TON

KHA036S - DIRECT AND BELT DRIVE

¹ Voltage - 60h	z		2	208/230	V - 3 P	h		46	60V - 3 I	Ph	57	'5V - 3	Ph
Compressor	Rated Load Amps			10).4				5.8			3.8	
	Locked Rotor Amps			7	'3				38	38 36.5			
Outdoor Fan Motors (1))		1.7						1.1	1.1 0.7			
Power Exhaust (1) 0.33 HP	Full Load Amps (total)			2	.4				1.3	2 0 t Belt Dir 3.4 2 15 1 15 1 12 8 14 9 V 480V 60 25 2 35 3 24 1 35 2 40 3 25 1 36 2		1	
Service Outlet 115V GFI (amps)				1	5				15			20	
Indoor Blower	Horsepower	0	.5		1	2	2	0.5	1	2	0.5	1	2
Motor	Туре	Dir	ect	В	elt	В	elt	Direct	Belt	Belt	Direct	Belt	Belt
	Full Load Amps	3	.9	4	.6	7	.5	2	2.1	3.4	2	1.7	2.7
² Maximum	Unit Only	2	5	2	25	3	80	15	15	15	15	15	15
Overcurrent Protection	with (1) 0.33 HP Power Exhaust	3	0	3	80	3	55	15	15	15	15	15	15
³ Minimum	Unit Only	1	9	2	20	2	23	11	11	12	8	8	9
Circuit Ampacity	with (1) 0.33 HP Power Exhaust	2	1	22 25		12	12	14	9	9	10		
ELECTRIC	HEAT DATA												
Electric Heat V	/oltage	208V	240V	208V	240V	208V	240V	480V	480V	480V	600V	600V	600V
² Maximum	Unit + 7.5 kW	40	45	45	45	45	50	25	25	25	20	20	20
Overcurrent Protection	Electric Heat 15 kW	60	70	60	70	70	70	35	35	35	30	30	30
³ Minimum	Unit + 7.5 kW	39	42	39	42	42	45	22	22	24	17	17	18
Circuit Ampacity	Electric Heat 15 kW	58	64	59	65	62	68	33	34	35	26	26	27
² Maximum	Unit + 7.5 kW	45	45	45	50	50	50	25	25	25	20	20	20
Overcurrent Protection	Electric Heat + Power Exhaust	70	70	70	70	70	70	35	35	40	30	30	30
³ Minimum	Unit + 7.5 kW	41	44	42	45	45	48	23	24	25	18	18	19
Circuit Ampacity	Electric Heat + Power Exhaust	61	67	61	67	64	70	35	35	36	27	27	28
ELECTRICA	AL ACCESSORIES												
Disconnect	Standard Access - 0-15 kW	20V	V15	201	V15	201	N15		20W15			20W15	
	Hinged Access - 0-15 kW	20V	V21	20V	W21	20V	W21		20W21			20W21	

 $^{^{\}rm 1}$ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

KHA048S - DIRECT AND BELT DRIVE

¹ Voltage - 60h	Z			2	208/230	V - 3 P	h		46	0V - 3 I	Ph	57	′5V - 3	Ph
Compressor	Rated Load A	Amps			13	3.7				6.2			4.8	
	Locked Rotor A	Amps			83	3.1				41		33		
Outdoor Fan Motors (1)	Full Load Amps (total)	1.7						1.1			0.7		
Power Exhaust (1) 0.33 HP	Full Load Amps (total)			2	.4				1.3			1	
Service Outlet	115V GFI (amps)				1	5				15			20	
Indoor Blower	Horsep	ower	0.	.5		1	2	2	0.5	1	2	0.5	1	2
Motor		Туре	Dir	ect	В	elt	В	elt	Direct	Belt	Belt	Direct	Belt	Belt
	Full Load A	Amps	3.	.9	4	.6	7	.5	2	2.1	3.4	2	1.7	2.7
² Maximum	Unit	Only	3	5	3	5	4	.0	15	15	15	15	15	15
Overcurrent Protection	with (1) 0.3 Power Ext		3	5	3	5	4	.0	15	15	15	15	15	15
³ Minimum	Unit	Only	2	3	2	24	2	27	11	11	13	9	9	10
Circuit Ampacity		with (1) 0.33 HP Power Exhaust		6	2	.6	2	.9	13	13 13		10	10	11
ELECTRIC	HEAT DATA													
Electric Heat \	/oltage		208V	240V	208V	240V	208V	240V	480V	480V	480V	600V	600V	600V
² Maximum	Unit + 7.	5 kW	50	50	50	50	50	50	25	25	25	20	20	20
Overcurrent Protection	Electric Heat 1	5 kW	70	70	70	70	70	80	35	35	35	30	30	30
³ Minimum	Unit + 7.	5 kW	43	46	43	46	46	49	23	23	24	18	18	19
Circuit Ampacity	Electric Heat 1	5 kW	62	68	63	69	66	72	34	34	35	27	27	28
² Maximum	Unit + 7.	5 kW	50	50	50	50	50	60	25	25	25	20	20	20
Overcurrent Protection	Electric Heat + 19 Power Exhaust	5 kW	70	80	70	80	70	80	35	35	40	30	30	30
³ Minimum	Unit + 7.	5 kW	45	48	46	49	49	52	24	24	25	19	19	20
Circuit Ampacity	Electric Heat + 19 Power Exhaust	5 kW	65	71	65	71	68	74	35	35	37	28	28	29
ELECTRICA	AL ACCESSORIES													
Disconnect	Standard Access - 0-1	5 kW	20V	V15	20V	V15	20V	V15		20W15			20W15	
	Hinged Access - 0-19	5 kW	20V	V21	201	V21	201	N21		20W21			20W21	_

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

5 TON

KHA060S - BELT DRIVE

¹ Voltage - 60hz	,			208/230	V - 3 Ph		460\/	- 3 Ph	575V	- 3 Ph	
		ad Amna			5.6		-	.8	5.8		
Compressor		ad Amps						_	38.9		
0.11	Locked Ro				10		52				
Outdoor Fan Full Load Amps (total) Motors (1)			2	4		1	.3	1			
Power Exhaust Full Load Amps (total) (1) 0.33 HP			2	.4		1	.3	1			
Service Outlet 115V GFI (amps)				1	15		1	5	20		
Indoor Blower				1		2	1	2	1	2	
Motor		Туре	В	elt	В	elt	Belt	Belt	Belt	Belt	
	Full Lo	ad Amps	4	.6	7.5		2.1	3.4	1.7	2.7	
² Maximum	Unit Only		4	10	4	ļ5	20	20	15	15	
Overcurrent Protection	` '	0.33 HP Exhaust	4	10	45		20	20	15	15	
³ Minimum	-	Unit Only		27 30		14	15	10	11		
Circuit Ampacity	with (1) 0.33 HP Power Exhaust		2	29	32		15	16	11	12	
ELECTRIC H	HEAT DATA	·									
Electric Heat Vo	oltage		208V	240V	208V	240V	480V	480V	600V	600V	
² Maximum	Unit +	7.5 kW	50	60	60	60	25	30	20	20	
Overcurrent	Electric Heat	15 kW	70	80	70	80	40	40	30	30	
Protection		22.5 kW	90	100	90	100	50	50	40	40	
³ Minimum	Unit +	7.5 kW	47	50	49	52	25	26	19	20	
Circuit	Electric Heat	15 kW	66	72	69	75	36	38	28	29	
Ampacity		22.5 kW	86	95	89	98	47	49	38	39	
² Maximum	Unit +	7.5 kW	60	60	60	60	30	30	20	25	
Overcurrent	Electric Heat +	15 kW	70	80	80	80	40	40	30	30	
Protection	Power Exhaust	22.5 kW	90	100	100	100	50	50	40	40	
³ Minimum	Unit +	7.5 kW	49	52	52	55	26	28	20	21	
Circuit	Electric Heat +	15 kW	68	75	71	77	38	39	29	30	
Ampacity	Ampacity Power Exhaust		88	97	91	100	49	50	39	40	
ELECTRICA	L ACCESSORI	ES		·		·		·			
Disconnect	Standard Access -	0-15 kW	20\	W18	20\	W18	201	V18	201	V18	
		22.5 kW	20\	W19	20\	W19	20V	V18	201	V18	
_	Hinged Access - 0-15 kW 22.5 kW		20\	N24	20\	N24	20\	V24	20W24		
			20\	N25	20\	N25	201	V24	20W24		

¹ Extremes of operating range are plus and minus 10% of line voltage.

² HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

6 TON

KHA072S - BELT DRIVE BLOWER

1 Voltage - 60hz				208/23	0V - 3 Ph		460V	- 3 Ph	575V - 3 Ph		
Compressor	Rated L	oad Amps			19		9	.7	7.4		
	Locked Ro	otor Amps		1	123		6	62	50		
Outdoor Fan Motor	Full L	oad Amps			3		1	.5	1.2		
Power Exhaust (1) 0.33 HP	Full L	oad Amps		4	2.4		1	.3	1		
Service Outlet 11	5V GFI (amps)				15		1	15	20		
		orsepower	1	.5		2	1.5	2	1.5	2	
Motor		Туре			В	elt	Belt	Belt	Belt	Belt	
	Full L	oad Amps	6	5.6	7	.5	3	3.4	2.4	2.7	
² Maximum		Unit Only		50	5	50	25	25	20	20	
Overcurrent Protection) 0.33 HP er Exhaust	5	50	5	50	25	25	20	20	
³ Minimum		Unit Only	3	34	35		17	18	13	14	
Circuit Ampacity		With (1) 0.33 HP Power Exhaust		36	37		18	19	14	15	
ELECTRIC	HEAT DATA										
Electric Heat Vo	Itage		208	240	208	240	480	480	600	600	
² Maximum	Unit+	7.5 kW	60	70	60	70	35	35	25	25	
Overcurrent	Electric Heat	15 kW	80	80	80	80	40	40	35	35	
Protection		22.5 kW	100	110	100	110	60	60	40	45	
		30 kW	125	125	125	125	70	70	50	50	
³ Minimum	Unit+	7.5 kW	53	56	54	57	28	29	22	23	
Circuit	Electric Heat	15 kW	73	79	74	80	40	40	31	32	
Ampacity		22.5 kW	92	102	93	102	51	51	40	41	
		30 kW	112	124	113	125	62	63	49	50	
² Maximum	Unit+	7.5 kW	70	70	70	70	35	35	25	25	
Overcurrent	Electric Heat	15 kW	80	90	80	90	45	45	35	35	
Protection	and (1) 0.33 HP Power Exhaust	22.5 kW	100	110	100	110	60	60	45	45	
		30 kW	125	150	125	150	70	70	50	60	
³ Minimum	Unit+	7.5 kW	56	59	57	60	30	30	23	24	
Circuit Ampacity	Electric Heat and (1) 0.33 HP	15 kW	75	81	76	82	41	41	32	33	
Ampacity	Power Exhaust	22.5 kW	95	104	96	105	52	53	41	42	
		30 kW	114	126	115	127	64	64	50	51	
ELECTRIC	AL ACCESSOR	IES									
Disconnect	Standard Access	- 0-15 kW	20\	W 18	20\	W18	201	W18	20W18		
Kit	22	2.5-30 kW	20\	W19	20\	W19	20\	W18	20W18		
	Hinged Access	- 0-15 kW	20\	W24	20\	N24	20\	N24	20W24		
	22	2.5-30 kW	20\	W25	20\	N25	20\	N24	20W24		

¹ Extremes of operating range are plus and minus 10% of line voltage.

 $^{^{\}rm 2}$ HACR type breaker or fuse.

³ Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

1		5 kW			7.5 kW		10 kW			
Input Voltage	No of Stages	kW input	Btuh Output	No of Stages	kW input	Btuh Output	No of Stages	kW input	Btuh Output	
208	1	3.8	12,800	1	5.6	19,200	1	7.5	25,600	
220	1	4.2	14,300	1	6.3	21,500	1	8.4	28,700	
230	1	4.6	15,700	1	6.9	23,500	1	9.2	31,400	
240	1	5.0	17,100	1	7.5	25,600	1	10.0	34,200	
440				1	6.3	21,500				
460				1	6.9	23,500				
480				1	7.5	25,600				
550				1	6.3	21,500				
575				1	6.9	23,500				
600				1	7.5	25,600				
Input		15 kW			22.5 kW			30 kW		
Voltage	No of Stages	kW input	Btuh Output	No of Stages	kW input	Btuh Output	No of Stages	kW input	Btuh Output	
208	1	11.2	38,400	1	16.9	57,700	1	22.5	76,800	
220	1	12.6	43,000	1	18.9	64,500	1	25.2	86,000	
230	1	13.8	47,000	1	20.7	70,700	1	27.5	93,900	
240	1	15.0	51,200	1	22.5	76,800	1	30.0	102,400	
440	1	12.6	43,000	1	18.9	64,500	1	25.2	86,000	
460	1	13.8	47,000	1	20.7	70,700	1	27.5	93,900	
480	1	15.0	51,200	1	22.5	76,800	1	30.0	102,40	
550	1	12.6	43,000	1	18.9	64,500	1	25.2	86,000	
575	1	13.8	47,000	1	20.7	70,700	1	27.5	93,900	

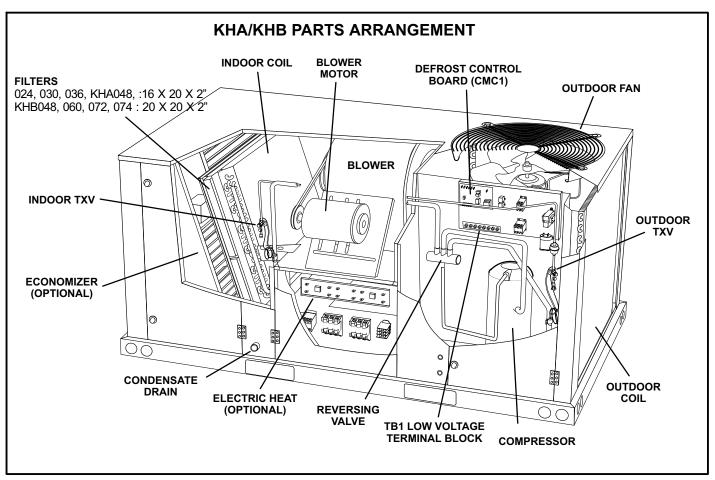


FIGURE 1

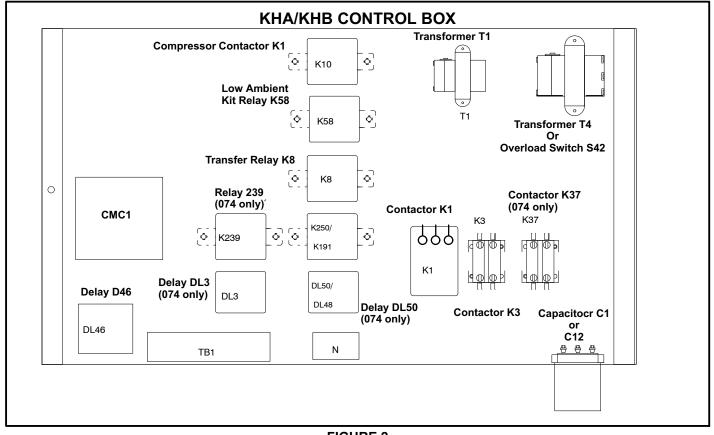
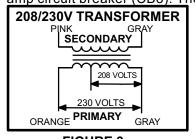


FIGURE 2

I-UNIT COMPONENTS

The KHA/KHB unit parts arrangement are shown in figure 1. All L1, L2 and L3 wiring is color coded; L1 is red, L2 is yellow and L3 is blue. See wiring diagrams in the back of this manual for complete call out of components.

A-Control Box Components


KHA/KHB control box components are shown in figure 2. The control box is located in the upper portion of the compressor compartment.

1-Terminal Strip TB1

All indoor thermostat connections will be to TB1 located in the control box.

2-Transformer T1

All KHA/KHB series units use a single line voltage to 24VAC transformer mounted in the control box. Transformer supplies power to control circuits in the unit. The transformer is rated at 70VA and is protected by a 3.5 amp circuit breaker (CB8). The 208/230 (P, Y) voltage

transformers use two primary voltage taps as shown in figure 3, while 460 (G) and 575 (J) voltage transformers use a single primary voltage tap.

FIGURE 3

3-Outdoor Fan Capacitor C1 (Y, G, J & M)

Fan capacitors C1 is used to assist in the start up of condenser fan motor B4. Capacitor ratings will be on outdoor fan motor nameplate.

4-Dual Capacitor C12 (Single Phase)

A single dual capacitor is used for both the outdoor fan and compressor (see unit diagram). The fan side and the compressor side have different MFD ratings. See side of capacitor for ratings,.

5-Compressor Contactor K1

K1 is a 24V line voltage contactor used to energize the compressor and in some cases (P and Y voltage) condenser fan in response to thermostat demand. Single phase units use single-pole double break contactors and three phase units use three-pole double break contactors.

6-Low Ambient Kit Relay K58

(option used with S11 low ambient switch)

Low ambient relay K58 is a N.C.DPDT relay with a 24V coil wired in parallel with reversing valve L1. When L1 is energized in the cooling cycle, K58 is also energized opening K58-1. Therefore, K58-1 is always closed during heating demand bypassing S11. This allows the fan to operate during the heating demand and cycle during the cooling demand.

7-Blower Contactor K3

Blower contactor K3 is used in all units. K3 has a 24V coil used to energize the indoor blower motor in response to blower demand. In single phase units K3 is a single-pole contactor and in three phase units K3 is a two-pole contactor.

8-Transfer Relay K8

K8 is a two-pole relay with a 24V coil used to de-energize the reversing valve during a heat call. On a first stage heat call K8-1 closes de-energizing the reversing valve and K8-2 closes energizing Y1 on the CMC1 board. Without K8 the reversing valve would remain energized at all times.

9-Outdoor Fan Relay K10 G, J & M Voltage

Outdoor fan relay K10 is a DPDT relay switch with a 24VAC coil. K10 energizes condenser fan motor B4 in response to a heating or cooling demand.

10-Transformer T4 (J voltage)

All (J) 575 voltage units use transformer T4 mounted in the control box. T4 is a line voltage to 460V to power the indoor blower. It is connected to line voltage and is powered at all times.

11-Condenser Fan Relay K10 (G, J voltage)

Outdoor fan relay K10 is a DPDT relay with a 24VAC coil. K10 energizes condenser fan B4. K10 is used with a low ambient kit only.

12-Blower Delay DL3 &DL50 -074 Only

When second stage heat demand is satisfied DL3 causes a 180 second blower off delay.

DL50 causes a 1.5 second delay switching from high speed to low speed.

13-Relay K239 -074 Units Only

Relay K239 sends the Y1 demand "G" signal to K3 (through K250) to energize the blower on low speed and also sends the "W1" demand "G" signal to K37 (through K250) to energize the blower on high speed.

14-Relay K250 -074 Units Only

Relay K250 passes the "G" signal to contactor K3 energizing the blower on low speed. On a Y2 call K250 passes the signal to K37 energizing the blower on high speed and internal solenoid L34 energizing the compressor on high speed.

15-Blower Contactor K37 -074 only

On two-speed operation K37 acts as the high speed blower contactor and K3 acts as the low speed contactor in response to blower demand.

16-Defrost Control CMC1

The KHA/KHB defrost system includes two components: a defrost thermostat and a defrost control.

Defrost Thermostat (Defrost Switch S6)

The defrost thermostat is located on the liquid line between the outdoor check/expansion valve and the distributor. When defrost thermostat senses 42°F (5.5°C) or cooler, the thermostat contacts close and send a signal to the defrost control board to start the defrost timing. It also terminates defrost when the liquid line warms up to 70°F (21°C).

Defrost Control

The defrost control board includes the combined functions of a time/temperature defrost control, defrost relay and diagnostic LEDs.

The control provides automatic switching from normal heating operation to defrost mode and back. During compressor cycle (call for defrost), the control accumulates compressor run times at 30-, 60-, or 90-minute field-adjustable intervals. If the defrost thermostat is closed when the selected compressor run time interval ends, the defrost relay is energized and defrost begins.

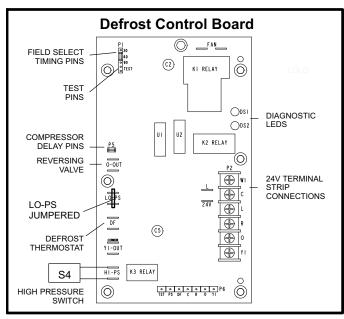


FIGURE 4

Defrost Control Timing Pins

Each timing pin selection provides a different accumulated compressor run time period. This time period must occur before a defrost cycle is initiated. The defrost interval can be adjusted to 30, 60 or 90 minutes (see figure 4). The defrost timing jumper is factory-installed to provide a 90-minute defrost interval. If the timing selector jumper is not in place, the control defaults to a 90-minute defrost interval. The maximum defrost period is 14 minutes and cannot be adjusted.

A TEST option is provided for troubleshooting. The TEST mode may be started any time the unit is in the heating mode and the defrost thermostat is closed or jumpered. If the jumper is in the TEST position at power-up, the control will ignore the test pins. When the jumper is placed across the TEST pins for two seconds, the control will enter the defrost mode. If the jumper is removed before an additional 5-second period has elapsed (7 seconds total), the unit will remain in defrost mode until the defrost thermostat opens or 14 minutes have passed. If the jumper is not re-

moved until after the additional 5-second period has elapsed, the defrost will terminate and the test option will not function again until the jumper is removed and re-applied.

Compressor Delay

The defrost board has a field-selectable function to reduce occasional sounds that may occur while the unit is cycling in and out of the defrost mode. The compressor will be cycled off for 30 seconds going in and out of the defrost mode when the compressor delay jumper is removed.

NOTE - The 30-second compressor feature is ignored when the defrost test pins are jumpered.

Time Delay

The timed-off delay is five minutes long. The delay helps to protect the compressor from short-cycling in case the power to the unit is interrupted (demand met for example) or a pressure switch opens. The delay is bypassed by placing the timer select jumper across the TEST pins for 0.5 seconds.

Pressure Switch Circuit

The defrost control incorporates two pressure switch circuits. A high pressure switch (S4) is connected to the board's HI PS terminals (see figure 4). The board also includes terminals LO PS but are jumpered and not in use. During a single demand cycle, the defrost control will lock out the unit after the fifth time that the circuit is interrupted by any switch wired to the control board. In addition, the diagnostic LEDs will indicate a locked-out switch after the fifth occurrence of an open pressure switch (see Table 1). The unit will remain locked out until power to the board is interrupted, then re-established or until the jumper is applied to the TEST pins for 0.5 seconds.

NOTE - The defrost control board ignores input from the LO PS terminals as follows:

during the TEST mode,

during the defrost cycle,

during the 90-second start-up period,

and for the first 90 seconds each time the reversing valve switches heat/cool modes.

Diagnostic LEDs

The defrost board uses two LEDs for diagnostics. The LEDs flash a specific sequence according to the condition.

TABLE 1

Defrost Control Board Diagnostic LED		
Mode	Green LED (DS2)	Red LED (DS1)
No power to con- trol	OFF	OFF
Normal operation / power to control	Simultaneous Slow	FLASH
Anti-short cycle lockout	Alternating Slow FLASH	
Low pressure switch, freezestat fault	OFF	Slow FLASH
Low pressure switch, freezestat lockout	OFF	ON
High pressure switch fault	Slow FLASH	OFF
High pressure switch lockout	ON	OFF

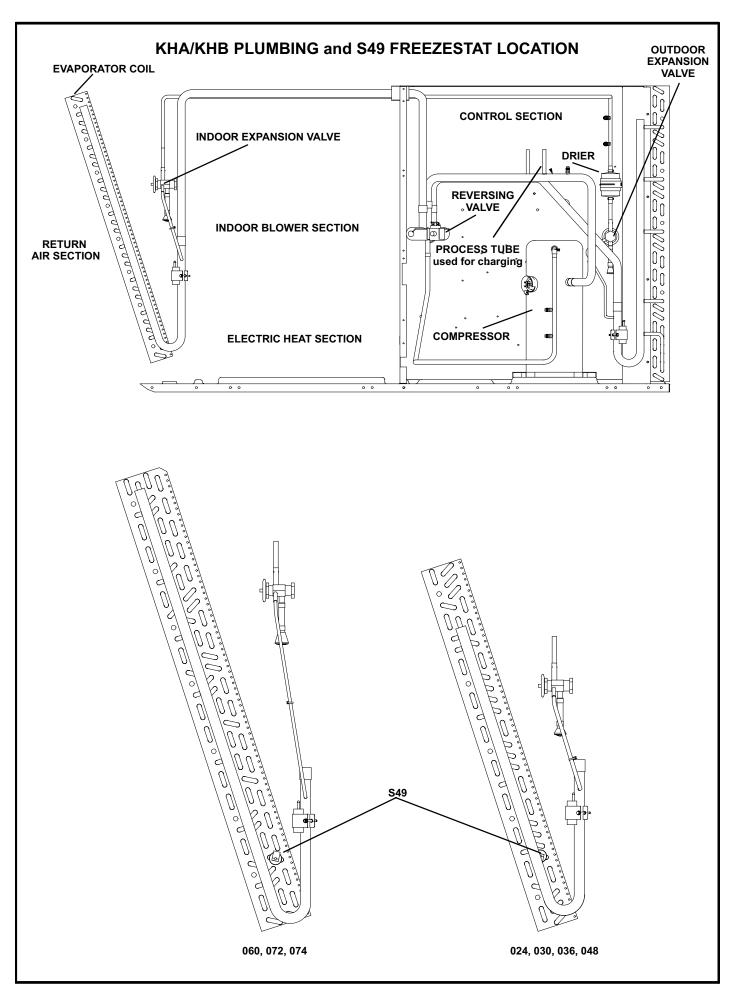


FIGURE 5

B-Cooling Components

If Interlink compressor replacement is necessary, call 1-800-4-LENNOX (1-800-453-6669).

AIMPORTANT

Some scroll compressors have an internal vacuum protector that will unload scrolls when suction pressure goes below 20 psig. A hissing sound will be heard when the compressor is running unloaded. Protector will reset when low pressure in system rises above 40 psig. DO NOT REPLACE COMPRESSOR.

KHA/KHB units use one cooling circuit consisting of a compressor, outdoor coil and indoor coil. See figure 5. Units are equipped with one draw-through type condenser fan. All units are equipped with indoor blowers which draw air across the indoor coil during unit operation. KHA/KHB units have three condensate drain locations: front, back and bottom of unit. See unit installation instructions for more detail. Cooling may be supplemented by a factory or field-installed economizer. The indoor coil is slab type. The indoor coil uses a thermostatic check/expansion valve as the primary expansion device. The indoor coil is also equipped with enhanced fins and rifled tubing. In all units the compressor is protected by a freezestat (S49) (on the indoor coil) and a high pressure switch (S4). A low ambient switch (S11) is available as an option for additional compressor protection.

1-Compressor B1

All KHA/KHB024/074 units use scroll compressor. See "SPECIFICATIONS" and "ELECTRICAL DATA" (table of contents) or compressor nameplate for compressor specifications.

A WARNING

Electrical shock hazard. Compressor must be grounded. Do not operate without protective cover over terminals. Disconnect power before removing protective cover. Discharge capacitors before servicing unit. Failure to follow these precautions could cause electrical shock resulting in injury or death.

The compressor is energized by a corresponding compressor contactor.

NOTE-Refer to the wiring diagram section for specific unit operation.

2-Freezestat S49

Each unit is equipped with a low temperature switch (freezestat) located on the return bend of the indoor coil.

The freezestat is wired in series with stage one cooling control circuit (see wring diagram). The switch is a SPST N.C. auto-reset switch which opens at $29^{\circ}F \pm 3^{\circ}F$ (-1.7°C \pm 1.7°C) on a temperature drop and closes at $58^{\circ}F \pm 4^{\circ}F$ (14.4°C \pm 2.2°C) on a temperature rise. To prevent coil icing, the freezestat opens during compressor operation to temporarily disable the compressor until the coil warms sufficiently to melt any accumulated frost.

If the freezestat is tripping frequently due to coil icing, check the airflow, filters and unit charge before allowing unit back in operation. Make sure to eliminate conditions which might promote indoor coil ice buildup.

3-High Pressure Switch S4

The high pressure switch is an auto reset SPST N.C. switch which opens on a pressure rise. The switch is located in the compressor discharge line and is wired to "HI PS" on the CMC1 board.

When discharge pressure rises to 640 ± 10 psig (4413 ± 69 kPa) (indicating a problem in the system) the switch opens and the CMC1 board de-energizes the compressor (the economizer can continue to operate). S4 will close when pressure drops back to 475 psig (3275 kPA).

4-Low Ambient Switch S11 (option)

The low ambient switch is an auto-reset SPST N.O. pressure switch which allows for mechanical cooling operation at low outdoor temperatures. In all models a switch is located in the liquid line prior to the indoor coil section.

In the P and Y voltage units S11 is wired in series with the K1 contactor and the CMC1 board fan contacts. In G, J and M voltage units S11 in series with outdoor fan relay K10 and low ambient relay K58 (if used).

When liquid pressure rises to 450 ± 10 psig $(3102 \pm 69 \text{ kPa})$, the switch closes and the condenser fan is energized. When discharge pressure in drops to 240 ± 10 psig $(1655 \pm 69 \text{ kPa})$, the switch opens and the condenser fan in that refrigerant circuit is de-energized. This intermittent fan operation results in higher evaporating temperature allowing the system to operate without icing the indoor coil and losing capacity.

5-Reversing Valve L1

A refrigerant reversing valve with a 24 volt solenoid coil is used to reverse refrigerant flow during unit operation in all KHA/KHB units. The reversing valve is connected in the vapor line of the refrigerant circuit. The reversing valve coil is energized during cooling demand and during defrost.

Reversing valve L1 is controlled by the CMC1 board and transfer relay K8 in response to cooling demand or by defrost.

6-Condenser Fan Motor B4

See specifications section of this manual for specifications of condenser fan B4. B4 is energized by contactor K1 in P and Y voltage units and K10 in G and J units. All motors are ball bearing type single-phase motors. The fans may be removed for servicing and cleaning by removing the fan grilles.

7-Low Temperature Switch S3 (option) (compressor monitor)

S3 is a SPST bimetal thermostat which opens on temperature drop. It is wired in line with the indoor thermostat and transfer relay K8. In the cooling mode, when outdoor temperature drops below 40° F $(4.5^{\circ}$ C) the switch opens and de-energizes the compressor. When the compressor is denergized the cooling demand is handled by the economizer. The switch automatically resets when outdoor temperature rises to 50° F $(10^{\circ}$ C).

8-Filter Drier (all units)

KHA/KHB units have a filter drier located in the liquid line of the refrigerant circuit at the exit of the condenser coil (outdoor coil in KHA units). The drier removes contaminants and moisture from the system. Replacement must be suitable for R-410A refrigerant.

9-Crankcase Heater HR1 & Thermostat S40

All units have a crankcase heater. HR1 prevents migration of liquid refrigeration into the compressor and ensures proper compressor lubrication.

KHA/KHB/072/074 only is equipped with S40, a N.C. thermostat located on the discharge line which opens when discharge line temperature rises above 94°F (34°C). When S40 opens the crankcase heater is de-energized. The thermostat closes when discharge line temperature drops below 74°F (23°C) energizing the crankcase heater.

10-Crankcase Heater Delay DL48 & Crankcase Heater Relay K191

Delay DL48 and relay K191 keep crankcase heater de-energized during and immediately following compressor shut down. They ensure the crankcase heater is off while compressor is energized.

C-Blower Compartment

KHA/KHB036 and 048 units are equipped with either direct drive or belt drive blowers. KHA/KHB024S and 030S units are equipped with direct drive blowers only and KHA/KHB060/074 units are available with belt drive blowers only. See unit nameplate for blower type. The blower compartment in all units is located between the evaporator coil and the compressor compartment.

1-Blower Wheels

All belt drive units use 10" x 10" (254 mm x 254 mm) blower wheels. The KHA024, 030, 036 and 048 direct drive units use 10" x 10" (254 mm x 254 mm) blower wheels also.

2-Indoor Blower Motor Capacitor C4

All single phase blower motors are PSC and requires a run capacitor. Ratings may vary from each motor. See motor nameplate for capacitor ratings.

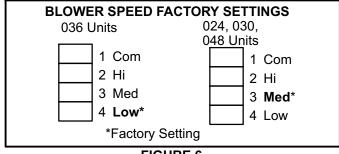
3-Indoor Blower Motor B3

All direct drive units use single phase PSC motors. Belt drive units use single or three phase motors (same as supply voltage). CFM adjustments on belt drive units are made by adjusting the motor pulley (sheave). CFM adjustments on direct drive units are made by changing speed taps. Belt drive motors are equipped with sealed ball bearings. Direct drive motors are equipped with sleeve bearings. Units may be equipped with motors manufactured by various manufacturers, therefore electrical FLA and LRA specifications will vary. See unit rating plate for information specific to your unit.

OPERATION / ADJUSTMENT

AIMPORTANT

Three phase scroll compressors must be phased sequentially for correct compressor and blower rotation. Follow "COOLING START-UP" section of installation instructions to ensure proper compressor and blower operation.


A-Blower Operation

Initiate blower demand at thermostat according to instructions provided with thermostat. Unit will cycle on thermostat demand. The following steps apply to applications using a typical electro-mechanical thermostat.

- Blower operation is manually set at the thermostat subbase fan switch. With fan switch in **ON** position, blowers will operate continuously.
- 2- With fan switch in AUTO position, the blowers will cycle with demand. Blowers and entire unit will be off when system switch is in OFF position.

B-Determining Unit CFM - Direct Drive Blowers

- 1- The following measurements must be made with air filters in place and no cooling demand.
- 2- With all access panels in place, measure static pressure external to unit (from supply to return). Add any additional air resistance for options and accessories shown in air resistance table.
- 3- Use figure 6 to determine the factory set blower speed.

FIGURE 6

4- Use the blower tables (see table of contents), measured static pressure and the factory-set blower speed to determine CFM. If CFM is lower than the design specified CFM, move the lead from speed tap 3 or 4 to speed tap 2. See figure 7.

Note - Speed tap 3 can be used on 036 units if speed tap 2 delivers more CFM than required by design specification.

For 460/575V units, remove the isolation lead from speed tap 2 before moving the wire to speed tap 2. Tape the exposed end of the isolation lead and secure away from other components. See figure 7.

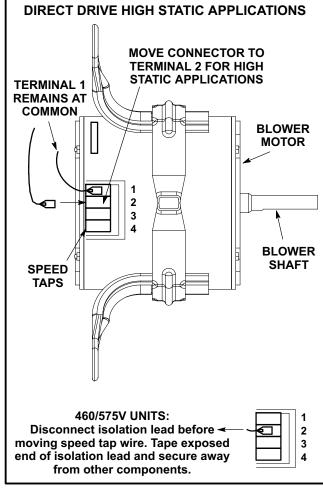


FIGURE 7

C-Determining Unit CFM - Belt Drive Blowers

IMPORTANT - KHB074 blower (G thermostat) *CFM MUST BE ADJUSTED IN HIGH SPEED*. Disconnect factory-installed J350 low speed connector from P350. Connectors are located near the bottom of the control box. Connect J351 high speed connector to P350. Once blower CFM is set, J350 can be reconnected to operate the blower on low during ventilation only demands. See table 2.

TABLE 2 TWO-SPEED BLOWER OPERATION KHB074 UNITS

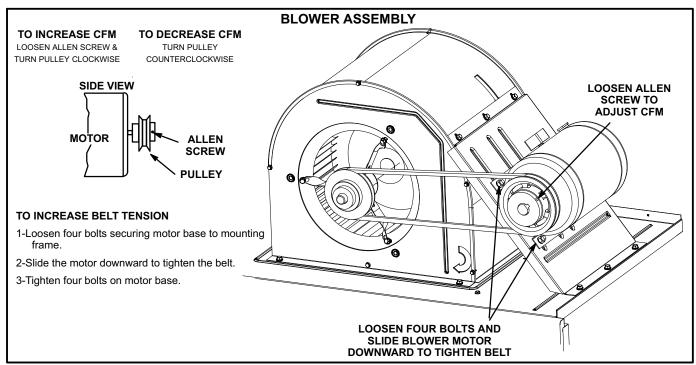
Thermostat	Blower Speed	
G (P350/J350)*	Low	
G (P350/J351)	High	
W1	High	
W2	High	
Y1	Low	
Y2	High	

^{*}Factory-installed jack/plug connection.

- 1- The following measurements must be made with air filters in place and no cooling demand.
- 2- With all access panels in place, measure static pressure external to unit (from supply to return).
- 3- Measure the indoor blower wheel RPM.
- 4- Referring to the blower tables use static pressure and RPM readings to determine unit CFM. Use air resistance table on when installing units with any of the options or accessories listed.
- 5- The blower RPM can be adjusted at the motor pulley. Loosen Allen screw and turn adjustable pulley clockwise to increase CFM. Turn counterclockwise to decrease CFM. See figure 8. Do not exceed minimum and maximum number of pulley turns as shown in table 3.

TABLE 3
MINIMUM AND MAXIMUM PULLEY ADJUSTMENT

Belt	Min. Turns Open	Max. Turns Open
A Section	No minimum	5


6- KHB074 Unit Only -

If low speed during ventilation is desired, replace J351 connector with J350.

D-Blower Belt Adjustment

Maximum life and wear can be obtained from belts only if proper pulley alignment and belt tension are maintained. Tension new belts after a 24-48 hour period of operation. This will allow belt to stretch and seat grooves. Make sure blower and motor pulley are aligned as shown in figure 9.

- 1- Loosen four bolts securing motor base to mounting frame. See figure 8.
- 2- To increase belt tension -Slide blower motor downward to tighten the belt. This increases the distance between the blower motor and the blower housing.
- 3- To loosen belt tension -Slide blower motor upward to loosen the belt. This decreases the distance between the blower motor and the blower housing.
- 4- Tighten four bolts securing motor base to the mounting frame.

FIGURE 8

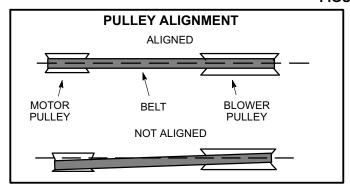


FIGURE 9

E-Check Belt Tension

Overtensioning belts shortens belt and bearing life. Check belt tension as follows:

- 1- Measure span length X. See figure 10.
- 2- Apply perpendicular force to center of span (X) with enough pressure to deflect belt 1/64" for every inch of span length or 1.5mm per 100mm of span length.

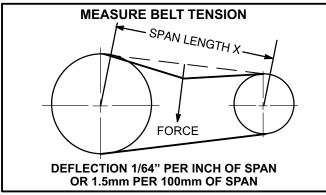


FIGURE 10

Example: Deflection distance of a 40" span would be 40/64" or 5/8".

Example: Deflection distance of a 400mm span would be 6mm.

3- Measure belt deflection force. For a used belt, the deflection force should be 5 lbs. (35kPa). A new belt deflection force should be 7 lbs. (48kPa).

A force below these values indicates an undertensioned belt. A force above these values indicates an overtensioned belt.

F-Field-Furnished Blower Drives

See blower data tables for field-furnished blower drives to determine BHP and RPM required. See drive kit table on to determine the drive kit number.

D-Optional Electric Heat Components

Electric heat matchups are found in the ELECTRICAL DATA tables. See table of contents.

All electric heat sections consist of electric heating elements exposed directly to the airstream. See figure 11. See figure 12 for vestibule parts arrangement.

1-Contactors K15, K16

All contactors are double break and either single, double or three pole (see diagram) and equipped with a 24VAC coil. The coils in the K15 and K16 contactors are energized by the indoor thermostat. In all units K15 energizes the heating elements, while in the 22.5 kW units, K15 and K16 energize the heating elements simultaneously.

2-High Temperature Limits S15 (Primary)

S15 is a SPST N.C. auto-reset thermostat located on the back panel of the electric heat section above the heating elements. S15 is the high temperature limit for the electric heat section. When S15 opens, indicating a problem in the system, contactor K15 is de-energized (including K16 in 22.5 kW units). When K15 is de-energized, all stages of heat are de-energized. See table 4 for S15 set points. Set points are factory set and not adjustable.

TABLE 4

Unit kW (Voltage)	S15 Opens ° F	S15 Closes ° F
7.5 (Y, G, J, P)	160	120
10 (P)	170	130
15 (Y)	170	130
15 (G, J, P)	160	120
22.5 (Y, G, J)	160	120
22.5 (P)	150	110
30 (Y, G, J)	150	110

3-High Temperature Limit S20 and S157 (Secondary)

S20 and S157 are SPST N.C. manual-reset thermostats. S20 and S157 are wired in series with the heating elements. See T1EH wiring diagrams. When either limit opens K15 and K16 are de-energized. When the contactors are de-energized, all stages of heat are de-energized. The thermostat is factory set to open at $220^{\circ}F \pm 6^{\circ}F$ ($104^{\circ}C \pm 3.3^{\circ}C$) on a temperature rise and can be manually reset when temperature falls below $160^{\circ}F$ ($71.0^{\circ}C$). See figure 12 for location.

4-Terminal Strip TB2

Terminal strip TB2 is used for single point power installations only. TB2 distributes power to TB3. Units with multi-point power connections will not use TB2.

5-Terminal Strip TB3

P and Y voltage units are equipped with terminal strip TB3. Electric heat line voltage connections are made to TB3, which distributes power to the electric heat components and is located on the vestibule. See figure 12.

6-Heating Elements HE1 through HE6

Heating elements are composed of helix wound bare nichrome wire exposed directly to the airstream. Three elements are connected in a three-phase arrangement. The elements in 208/230V units are connected in a "Delta" arrangement. Elements in 460 and 575V units are connected in "Wye" arrangement. Each stage is energized independently by the corresponding contactors located on the electric heat vestibule panel. Once energized, heat transfer is instantaneous. High temperature protection is provided by primary and redundant high temperature limits and overcurrent protection is provided by fuses.

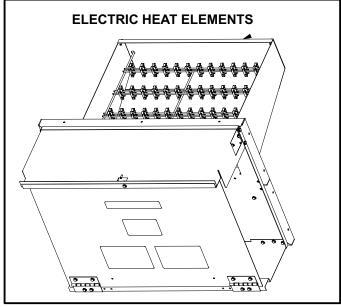


FIGURE 11

7-Fuse F3 and F42

Fuse F3 and F42 are housed in a fuse block which holds two or three fuses. Each F3 fuse is connected in series with each leg of electric heat. Figure 12 and table 5 show the fuses used with each electric heat section.

8-Unit Fuse Block & Fuse F4

Unit fuses F4 provide short circuit and ground fault protection to all cooling components in the KHA/KHB units with electric heat. The fuses are rated in accordance with the amperage of the cooling components. The F 4 fuse block is located inside a sheetmetal enclosure.

TABLE 5

	Veltore	FU	ISE	Qty	Qty
Unit	Voltage- Phase	F3	F42	each	total
	208/230V-1P	40 A-250V		2	2
T45110075	208/230V-3P	25 A-250V		3	3
T1EH0075	460V-3P	15 A-600V		3	3
	575V-3P	15 A-600V		3	3
T1EH0010	208/230V-1P	30 A-250V	30A-250V	2	2
T1EH0015	208/230V-1P	40 A-250V	40A-250V	2	4
	208/230V-3P	50 A-250V		3	3
	460V	25 A-600V		3	3
	575V	20 A-600V		3	3
	208/230V-1P	40 A-250V	40A-250V	3	6
T1EH00225	208/230V-3P	45 A-250V	45A-250V	3	6
1 1EH00225	460V-3P	35 A-600V		3	3
	575V-3P	30 A-600V		3	3
	208/230V-3P	60 A-250V	60A-250V	3	6
T1EH0300	460V-3P	50 A-600V		3	3
	575V-3P	40 A-600V		3	3

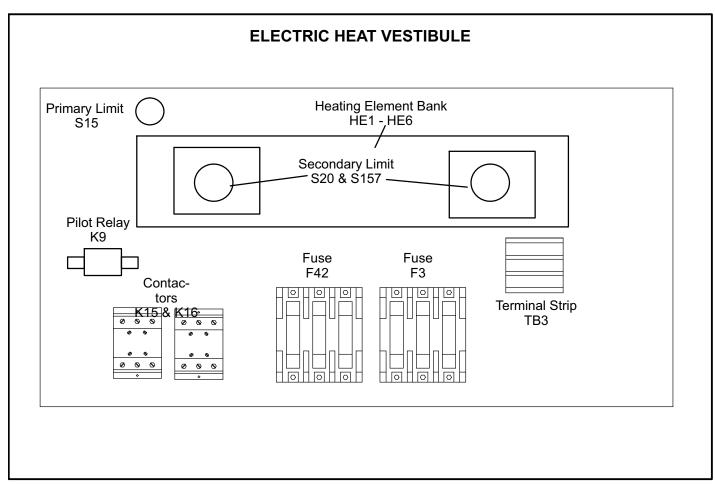


FIGURE 12

II-PLACEMENT AND INSTALLATION

Make sure the unit is installed in accordance with the installation instructions and all applicable codes. See accessories section for conditions requiring use of the optional roof mounting frame (T1CURB).

III-START UP - OPERATION

Refer to startup directions and refer closely to the unit wiring diagram when servicing. See unit nameplate for minimum circuit ampacity and maximum fuse size.

A-Preliminary and Seasonal Checks

- 1- Make sure the unit is installed in accordance with the installation instructions and applicable codes.
- 2- Inspect all electrical wiring, both field and factory installed for loose connections. Tighten as required. Refer to unit diagram located on inside of unit control box cover.
- 3- Check to ensure that refrigerant lines are in good condition and do not rub against the cabinet or other refrigerant lines.
- 4- Check voltage at the disconnect switch. Voltage must be within the range listed on the nameplate. If not, consult the power company and have the voltage corrected before starting the unit.
- 5- Recheck voltage and amp draw with unit running. If voltage is not within range listed on unit nameplate, stop unit and consult power company. Refer to unit nameplate for maximum rated load amps.
- 6- Inspect and adjust blower belt (see section on Blower Compartment Blower Belt Adjustment).

B-Heating Start Up

1- Set thermostat or temperature control device to initiate a first-stage heating demand.

A first-stage heating demand (W1) will energize compressor 1 and the outdoor fan.

Note - L1 reversing valve is de-energized in the heating mode.

KHA Units With Optional Electric Heat -

An increased heating demand (W2) will energize electric heat. Electric heat is also energized during the defrost cycle to maintain discharge air temperature.

C-Cooling Start Up

AIMPORTANT

If unit is equipped with a crankcase heater. Make sure heater is energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.

 Initiate first and second stage cooling demands according to instructions provided with thermostat. See table 6 for operation.

TABLE 6 COOLING OPERATION

T'Stat Demand	Energized		
024-072 No	024-072 No Economizer or Outdoor Air Unsuitable		
Y1	Compressor	Condenser Fan	
Y2	Compressor	Condenser Fan	
024-072 Uı	nit Equipped With An Econo	mizer	
Y1	Economizer	na	
Y2	Economizer + Compressor	Condenser Fan	
074 No Ec	074 No Economizer or Outdoor Air Unsuitable		
Y1	Compressor Low Speed*	Condenser Fan	
Y2	Compressor High Speed**	Condenser Fan	
074 Unit Equipped With An Economizer			
Y1	Economizer	na	
Y2	Economizer + Compressor Low Speed*	Condenser Fan	

*67% of full capacity **100% of full capacity

Note - The reversing valve is energized at the same time as the compressor.

Note - KH 074 units are equipped with two-stage compressors.

- 2. Units contain one refrigerant circuit or stage.
- 3. Unit is charged with R-410A refrigerant. See unit rating plate for correct amount of charge.
- 4. Refer to Refrigerant Charge and Check section for proper method to check refrigerant charge.

Three Phase Scroll Compressor Voltage Phasing

Three phase scroll compressors must be phased sequentially to ensure correct compressor and blower rotation and operation. Compressor and blower are wired in phase at the factory. Power wires are color-coded as follows: line 1-red, line 2-yellow, line 3-blue.

- Observe suction and discharge pressures and blower rotation on unit start-up.
- 2- Suction pressure must drop, discharge pressure must rise and blower rotation must match rotation marking.

If pressure differential is not observed or blower rotation is not correct:

- 3- Disconnect all remote electrical power supplies.
- 4- Reverse any two field-installed wires connected to the line side of K1 contactor. <u>Do not reverse wires at blow-</u> er contactor.

Make sure the connections are tight.

Discharge and suction pressures should operate at their normal start-up ranges.

IV- SYSTEMS SERVICE CHECKS

Refrigerant Charge and Check KHA024/072 & KHB074

WARNING-Do not exceed nameplate charge under any condition.

This unit is factory charged and should require no further adjustment. If the system requires charge, reclaim the charge, evacuate the system and add required name-plate charge.

NOTE - System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge **must** be weighed into the system.

If weighing facilities are not available, or to check the charge, use the following procedure:

- 1- Attach gauge manifolds and operate unit in cooling mode until system stabilizes (approximately five minutes).
- 2- Check each system separately with all stages operating.
- 3- Use a thermometer to accurately measure the outdoor ambient temperature.
- 4- Apply the outdoor temperature to tables 7 through 13 to determine normal operating pressures.
- 5- Compare the normal operating pressures to the pressures obtained from the gauges. Minor variations in these pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system. Correct any system problems before proceeding.
- 6- If discharge pressure is high, remove refrigerant from the system. If discharge pressure is low, reclaim the charge, evacuate the system then add refrigerant.
 - Add or remove charge in increments.
 - Allow the system to stabilize each time refrigerant is added or removed.
- 7- Use the following approach method along with the normal operating pressures to confirm readings.

TABLE 7
KHA024S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	226	147
75°F	258	148
85°F	304	151
95°F	351	154
105°F	402	157
115°F	460	160

TABLE 8 KHA030S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	235	145
75°F	273	148
85°F	316	151
95°F	363	153
105°F	416	156
115°F	476	158

TABLE 9 KHA036S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	247	140
75°F	289	143
85°F	331	145
95°F	381	148
105°F	434	151
115°F	492	154

TABLE 10 KHA048S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	272	139
75°F	313	142
85°F	359	145
95°F	410	148
105°F	465	150
115°F	529	152

TABLE 11 KHA060S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	265	136
75°F	304	139
85°F	348	141
95°F	397	144
105°F	447	147
115°F	507	149

TABLE 12 KHA072S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	257	134
75°F	297	138
85°F	340	142
95°F	387	146
105°F	438	149
115°F	493	153

TABLE 13
KHB074S NORMAL OPERATING PRESSURES

Outdoor Coil Entering Air Temp	Dis. <u>+</u> 10 psig	Suct. <u>+</u> 5 psig
65°F	257	127
75°F	297	134
85°F	340	139
95°F	386	142
105°F	438	146
115°F	491	149

C-Charge Verification - Approach Method KHA024/072 &KHB074

- 8- Using the same thermometer, compare liquid temperature to outdoor ambient temperature.
 - Approach Temperature = Liquid temperature minus ambient temperature.
- 9- Approach temperature should match values in table 14. An approach temperature greater than value shown indicates an undercharge. An approach temperature less than value shown indicates an overcharge.
- 10- Do not use the approach method if system pressures do not match pressures in tables 7 through 13. The approach method is not valid for grossly over or undercharged systems.

TABLE 14
APPROACH TEMPERATURE

Unit	Liquid Temp. Minus Ambient Temp.
KHA024S	7°F <u>+</u> 1 (3.9°C <u>+</u> 0.5)
KHA030S, 036S	9°F <u>+</u> 1 (5.0°C <u>+</u> 0.5)
KHA048S, 060S	11°F <u>+</u> 1 (6.1°C <u>+</u> 0.5)
KHA072S, KHB074	8°F <u>+</u> 1 (4.4°C <u>+</u> 0.5)

D-Refrigerant Charge and Check - KHB024/060 WARNING-Do not exceed nameplate charge under any condition.

This unit is factory charged and should require no further adjustment. If the system requires additional refrigerant, <u>reclaim the charge</u>, <u>evacuate the system</u>, and <u>add required nameplate charge</u>.

NOTE - System charging is not recommended below 60°F (15°C). In temperatures below 60°F (15°C), the charge **must** be weighed into the system.

If weighing facilities are not available, or to check the charge, use the following procedure:

IMPORTANT - Charge unit in standard cooling mode.

- Make sure outdoor coil is clean. Attach gauge manifolds and operate unit at full CFM in cooling mode with economizer disabled until system stabilizes (approximately five minutes). Make sure all outdoor air dampers are closed.
- 2. Compare the normal operating pressures (see table 15 through 19) to the pressures obtained from the gauges. Check unit components if there are significant differences.
- Measure the outdoor ambient temperature and the suction pressure. Refer to the appropriate circuit charging curve to determine a target liquid temperature.

Note - Pressures are listed for sea level applications.

- 4- Use the same thermometer to accurately measure the liquid temperature (in the outdoor section).
 - If measured liquid temperature is higher than the target liquid temperature, add refrigerant to the system.
 - If measured liquid temperature is lower than the target liquid temperature, recover some refrigerant from the system.
- 5- Add or remove charge in increments. Allow the system to stabilize each time refrigerant is added or removed.
- 6- Continue the process until measured liquid temperature agrees with the target liquid temperature. Do not go below the target liquid temperature when adjusting charge. Note that suction pressure can change as charge is adjusted.
- 7- Example KHB024: At 95°F outdoor ambient and a measured suction pressure of 130psig, the target liquid temperature is 101°F. For a measured liquid temperature of 112°F, add charge in increments until measured liquid temperature agrees with the target liquid temperature.

TABLE 15

				KHB024 I	Normal O	perating F	Pressures	i			
				Outdoor	Coil Enter	ng Air Tem	perature				
65	°F	75	°F	85	°F	95	°F	105	5 °F	115	°F
Suct (psig)	Disc (psig)										
117	220	119	255	121	297	122	343	123	394	125	449
125	221	127	256	129	297	131	343	132	394	135	451
138	226	145	261	148	302	151	352	155	401	156	459
153	231	164	268	171	311	174	357	177	409	180	465

TABLE 16

				KHB030 I	Normal O _l	perating F	Pressures				
				Outdoor	Coil Enteri	ng Air Tem	perature				
65	°F	75	°F	85	°F	95	°F	105	5°F	115	°F
Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)
116	227	118	262	120	303	123	347	125	395	127	449
125	229	127	267	129	308	132	349	133	398	136	452
139	235	143	271	146	313	150	360	153	409	155	463
147	239	153	277	159	321	164	366	168	416	174	472

TABLE 17

	KHB036 Normal Operating Pressures										
				Outdoor	Coil Enter	ng Air Tem	perature				
65	°F	75	°F	85	°F	95	°F	105	5 °F	115	°F
Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)
110	234	110	272	118	317	122	366	125	422	124	475
123	238	122	277	126	320	129	367	131	419	134	478
142	142 248 144 286 146 329 150 378 150 429 155 491										
154	253	163	295	168	336	171	393	173	439	177	500

TABLE 18

	KHB048 Normal Operating Pressures										
				Outdoor	Coil Enter	ing Air Tem	perature				
65	°F	75	°F	85	°F	95	°F	105	5 °F	115	o°F
Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)
112	239	113	277	115	319	117	363	120	411	120	464
119	244	121	282	123	323	126	368	128	416	130	471
140	140 253 141 291 142 333 144 377 147 426 149 481										
158	264	162	301	165	343	167	389	169	439	170	493

TABLE 19

				KHB060 N	Normal O _l	perating F	Pressures				
				Outdoor	Coil Enteri	ng Air Tem	perature				
65	°F	75	°F	85	°F	95	°F	105	5°F	115	°F
Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)	Suct (psig)	Disc (psig)
115	246	116	284	118	326	120	372	122	423	124	478
123	250	125	288	127	331	129	377	130	428	133	484
139	259	143	299	146	342	147	388	149	440	153	495
149	266	159	308	163	352	167	400	170	452	173	509

V-MAINTENANCE

The unit should be inspected once a year by a qualified service technician.

ACAUTION

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.

A-Lubrication

All motors are lubricated at the factory. No further lubrication is required.

B-Filters

Units are equipped with temporary filters which need to be replaced before the building is occupied. See table 20 for correct filter size. Refer to local codes or appropriate jurisdiction for approved filters.

Approved filters should be checked monthly and replaced when necessary. Take note of air flow direction marking on filter frame when reinstalling filters. See figure 13.

▲WARNING

Units are shipped from the factory with temporary filters. Replace filters before building is occupied. Damage to unit could result if filters are not replaced with approved filters. Refer to appropriate codes.

TABLE 20 UNIT FILTERS

Unit	Qty	Filter Size - inches (mm)
KHA/KHB024, KHA/ KHB030, KHA/KHB036, KHA048,	4	16 X 20 X 2 (406 X 508 X 51)
KHB048, KHA/KHB060, KHA/KHB072, KHB074	4	20 X 20 X 2 (508 X 508 X 51)

NOTE-Filters must be U.L.C. certified or equivalent for use in Canada.

C-Supply Air Blower Wheel

Annually inspect supply air blower wheel for accumulated dirt or dust. Turn off power before attempting to remove access panel or to clean blower wheel.

D-Indoor Coil

Inspect and clean coil at beginning of each cooling and heating season. Clean using mild detergent or commercial coil cleanser. Flush coil and condensate drain with water taking care not to get insulation, filters and return air ducts wet.

E-Outdoor Coil

Clean outdoor coil annually with detergent or commercial coil cleaner and inspect monthly during the cooling season.

Outdoor coils are made of single and two formed slabs. On units with two slabs, dirt and debris may become trapped between the slabs. To clean between slabs, carefully separate coil slabs and wash them thoroughly. See figure 14. Flush coils with water following cleaning.

Note - Remove all screws and gaskets prior to cleaning procedure and replace upon completion.

F-Filter Drier

The unit is equipped with a biflow filter drier. if replacement is necessary, order another of like design.

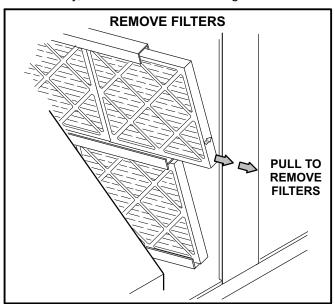
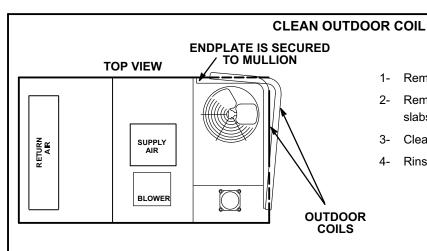



FIGURE 13

- 1- Remove screws securing coil end plate to mullion.
- 2- Remove clips connecting coils slabs and separate slabs 3-4" (76-102mm).
- 3- Clean coils with detergent or commercial coil cleaner.
- 4- Rinse thoroughly with water and reassemble.

FIGURE 14

VI-ACCESSORIES

The accessories section describes the application of most of the optional accessories which can be factory or field installed to the KHA units.

A-T1CURB

When installing the KHA/KHB units on a combustible surface for downflow discharge applications, the Lennox T1CURB 8 inch, 14-inch, 18 inch or 24-inch height roof mounting frame is used. The roof mounting frames are recommended in all other applications but not required. If the units are not mounted on a flat (roof) surface, they MUST be supported under all edges and under the middle of the unit to prevent sagging. The units MUST be mounted level within 1/16" per linear foot or 5mm per meter in any direction.

The assembled mounting frame is shown in figure 15. Refer to the roof mounting frame installation instructions for details of proper assembly and mounting. The roof mounting frame MUST be squared to the roof and level before mounting. Plenum system MUST be installed before the unit is set on the mounting frame. Typical roof curbing and flashing is shown in figure 16. Refer to the roof mounting frame installation instructions for proper plenum construction and attachment.

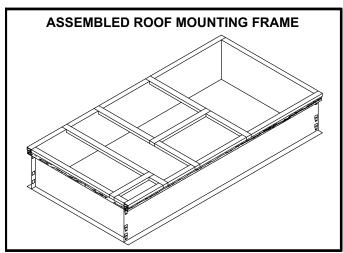
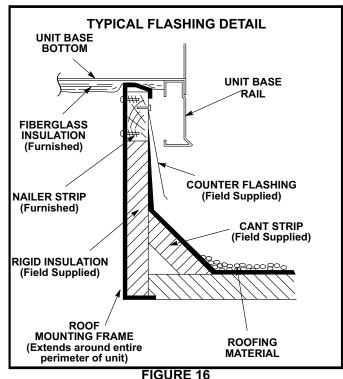



FIGURE 15

.....

B-Transitions

Optional supply/return transitions T1TRAN10AN1 is available for use with the KHA/KHB 2, 2.5, 3, 4 and 5 ton units and T1TRAN20N-1 is available for the 6 ton units utilizing optional T1CURB roof mounting frames. Transition must be installed in the mounting frame before mounting the unit to the frame. Refer to the manufacturer's instructions included with the transition for detailed installation procedures.

C-Outdoor Air Dampers

C1DAMP11A-1 is available for all units. Both sets include the outdoor air hood. A motorized kit (K1DAMP21A-1) can be ordered separately for all unit sizes. The dampers may be manually or motor (M) operated to allow up to 25 percent outside air into the system at all times (see figure 17). Washable filter supplied with the outdoor air dampers can

be cleaned with water and a mild detergent. It should be sprayed with Filter Handicoater when dry prior to reinstallation. Filter Handicoater is R.P. Products coating no. 418 and is available as Lennox Part No. P-8-5069.

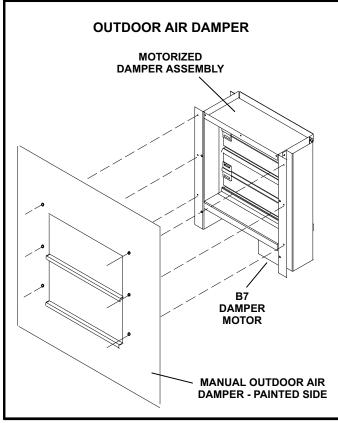
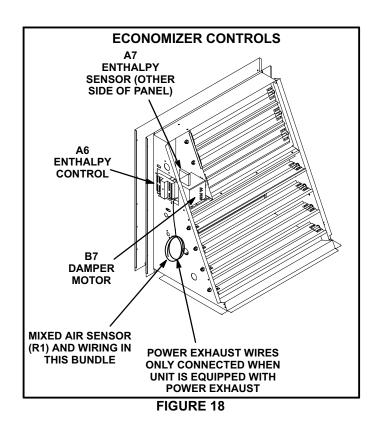


FIGURE 17

D-Supply and Return Diffusers (all units)


Optional flush mount diffuser/return FD9-65 and extended mount diffuser/return RTD9-65 available for use with all KHA units. Refer to manufacturer's instructions included with transition for detailed installation procedures.

E-Economizer

(Field or Factory Installed)

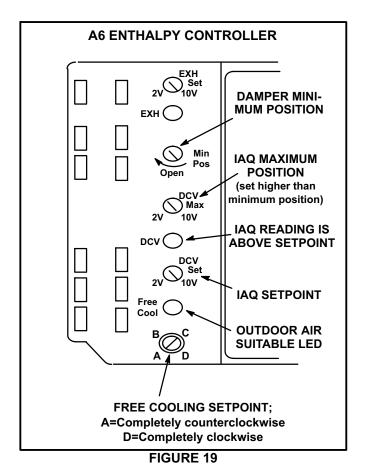
Unit may contain an optional field or factory-installed economizer equipped with an A6 enthalpy control and an A7 outdoor enthalpy sensor. The modulating economizer opens fully to use outdoor air for free cooling when temperature is suitable and opens to minimum position during the occupied time period.

The A6 enthalpy control is located in the economizer access area. See figure 18. The A7 enthalpy sensor is located on the division panel between horizontal supply and return air sections.

Optional Sensors

An optional differential sensor (A62) may be used with the A7 outdoor sensor to compare outdoor air enthalpy to return air enthalpy. When the outdoor air enthalpy is below the return air temperature, outdoor air is used for free cooling.

Mixed air sensor (R1) is used to modulate dampers to 55°F (13°C) discharge air.


An optional IAQ sensor (A63) may be used to lower operating costs by controlling outdoor air based on CO_2 level or room occupancy (also called demand control ventilation or DCV). Damper minimum position can be set lower than traditional minimum air requirements; dampers open to traditional ventilation requirements when CO_2 level reaches DCV (IAQ) setpoint.

Refer to instructions provided with sensors for installation.

A6 Enthalpy Control LED's

A steady green Free Cool LED indicates that outdoor air is suitable for free cooling.

When an optional IAQ sensor is installed, a steady green DCV LED indicates that the IAQ reading is higher than setpoint requiring more fresh air. See figure 19.

Free Cooling Setpoint

Outdoor air is considered suitable when temperature and humidity are less than the free cooling setpoints shown in table 21. Setting A is recommended. See figure 19. At setting A, free cooling will be energized when outdoor air is approximately 73°F (23°C) and 50% relative humidity. If indoor air is too warm or humid, lower the setpoint to B. At setting B, free cooling will be energized at 70°F (21°C) and 50% relative humidity.

When an optional A62 differential sensor is installed, turn A6 enthalpy control free cooling setpoint potentiometer completely clockwise to position "D".

TABLE 21
ENTHALPY CONTROL SETPOINTS

Control Setting	Free Cooling Setpoint At 50% RH
Α	73° F (23° C)
В	70° F (21° C)
С	67° F (19° C)
D	63° F (17° C)

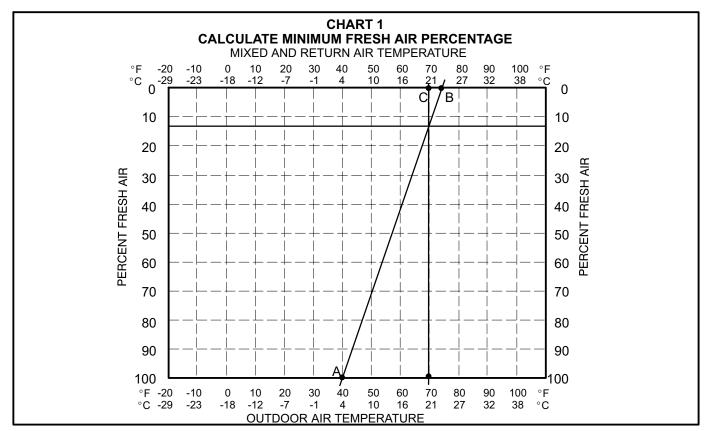
Damper Minimum Position

NOTE - A jumper must be installed between TB1 R and OC terminals to maintain occupied status (allowing minimum fresh air). When using an electronic thermostat or energy management system with an occupied/unoccupied feature, remove jumper.

- 1- Set thermostat to occupied mode if the feature is available. Make sure jumper is in place between TB1 terminals R and OC if using a thermostat which does not have the feature.
- 2- Rotate MIN POS SET potentiometer to approximate desired fresh air percentage.

Note - Damper minimum position can be set lower than traditional minimum air requirements when an IAQ sensor is specified. Dampers will open to DCV MAX setting (if CO2 is above setpoint) to meet traditional ventilation requirements.

- 3- Measure outdoor air temperature. Mark the point on the bottom line of chart 1 and label the point "A" (40°F, 4°C shown).
- 4- Measure return air temperature. Mark that point on the top line of chart 1 and label the point "B" (74°F, 23°C shown).
- 5- Measure mixed air (outdoor and return air) temperature. Mark that point on the top line of chart 1 and label point "C" (70°F, 21°C shown).
- 6- Draw a straight line between points A and B.
- 7- Draw a vertical line through point C.
- 8- Draw a horizontal line where the two lines meet. Read the percent of fresh air intake on the side.
- 9- If fresh air percentage is less than desired, adjust MIN POS SET potentiometer higher. If fresh air percentage is more than desired, adjust MIN POS SET potentiometer lower. Repeat steps 3 through 8 until calculation reads desired fresh air percentage.


DCV Set and Max Settings

Adjust settings when an optional IAQ sensor is installed.

The DCV SET potentiometer is factory-set at approximately 50% of the potentiometer range. Using a standard 1-2000ppm CO₂ sensor, dampers will start to open when the IAQ sensor reads approximately 1000ppm. Adjust the DCV SET potentiometer to the approximate setting specified by the controls contractor. Refer to figure 19.

The DCV MAX potentiometer is factory-set at approximately 50% of the potentiometer range or 6VDC. Dampers will open approximately half way when CO₂ rises above setpoint. Adjust the DCV MAX potentiometer to the approximate setting specified by the controls contractor. Refer to figure 19.

Note - DCV Max must be set higher than economizer minimum position setting for proper demand control ventilation.

Economizer Operation

The occupied time period is determined by the thermostat or energy management system.

Outdoor Air Not Suitable:

During the unoccupied time period dampers are closed.

During the occupied time period a cooling demand will open dampers to minimum position and mechanical cooling functions normally.

During the occupied time period dampers will open to DCV MAX when IAQ reading is above setpoint (regardless of thermostat demand or outdoor air suitability).

Outdoor Air Suitable:

See table 22 for economizer operation with a standard twostage thermostat.

During the occupied period, dampers will open to DCV MAX when IAQ reading is above setpoint (regardless of thermostat demand or outdoor air suitability). DCV MAX will NOT override damper full-open position. When an R1 mixed air sensor for modulating dampers is installed, DCV MAX may override damper free cooling position when occupancy is high and outdoor air temperatures are low. If R1 senses discharge air temperature below 45°F (7°C), dampers will move to minimum position until discharge air temperature rises to 48°F (9°C).

B-Outdoor Air Dampers

Optional manual and motorized outdoor air dampers provide fresh outdoor air. The motorized damper assembly opens to minimum position during the occupied time period and remains closed during the unoccupied period. Manual damper assembly is set at installation and remains in that position.

Set damper minimum position in the same manner as economizer minimum position. Adjust motorized damper position using the thumbwheel on the damper motor. See figure 20. Manual damper fresh air intake percentage can be determined in the same manner.

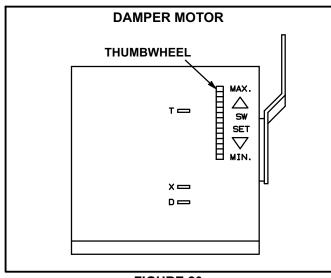


FIGURE 20

TABLE 22 ECONOMIZER OPERATION

OUTDOOR AIR IS SUITABLE FOR FREE COOLING -- FREE COOL LED "ON"

THERMOSTAT DEMAND	DAMPER	MECHANICAL COOLING	
THERIMOSTAL DEMIAND	UNOCCUPIED	OCCUPIED	MECHANICAL COOLING
OFF	CLOSED	CLOSED	NO
G	CLOSED	MINIMUM	NO
Y1	OPEN*	OPEN*	NO
Y2	OPEN*	OPEN*	STAGE 1

^{*}Dampers will modulate to maintain 55°F (13°C) supply air when an R1 mixed air sensor is installed.

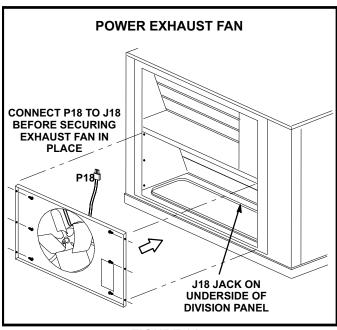


FIGURE 21

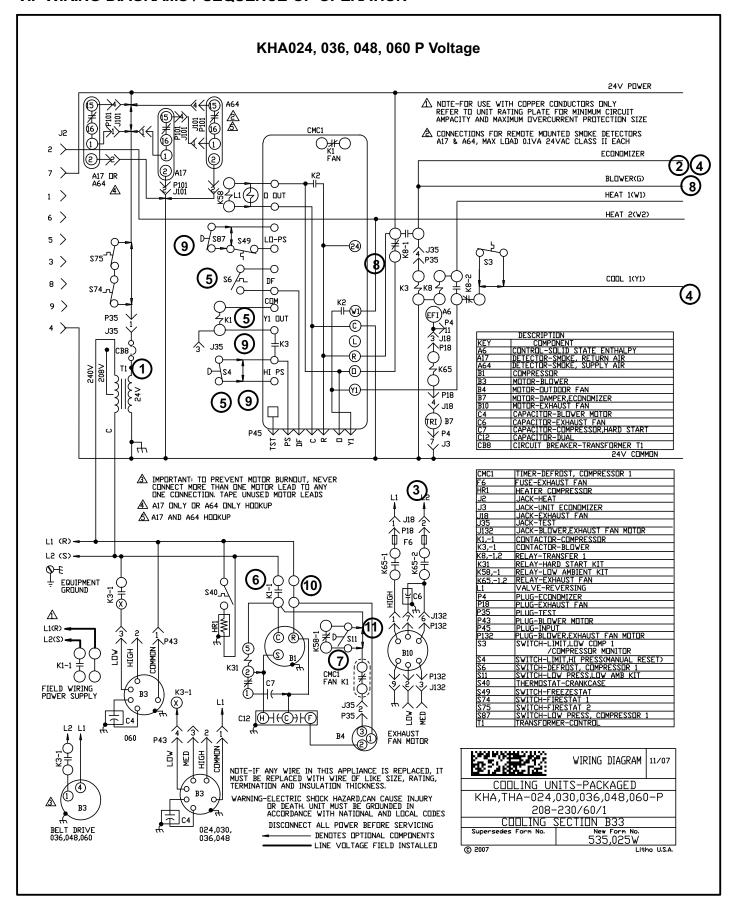
F-Power Exhaust Relay K65 (PED units)

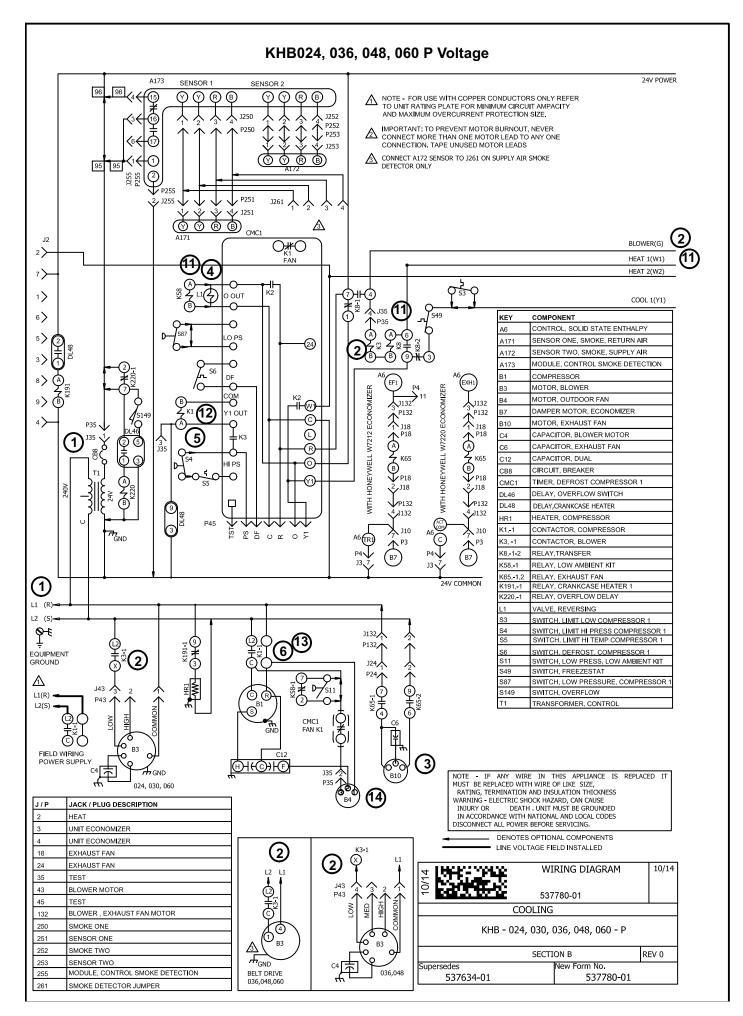
Power exhaust relay K65 is a N.O. DPDT relay with a 24VAC coil. K65 is used in all KHA/KHB units equipped with the optional power exhaust dampers. K65 is energized by the economizer control panel (A6), after the economizer dampers reach 50% open (adjustable on control A6). When K65 closes, the exhaust fan B10 is energized.

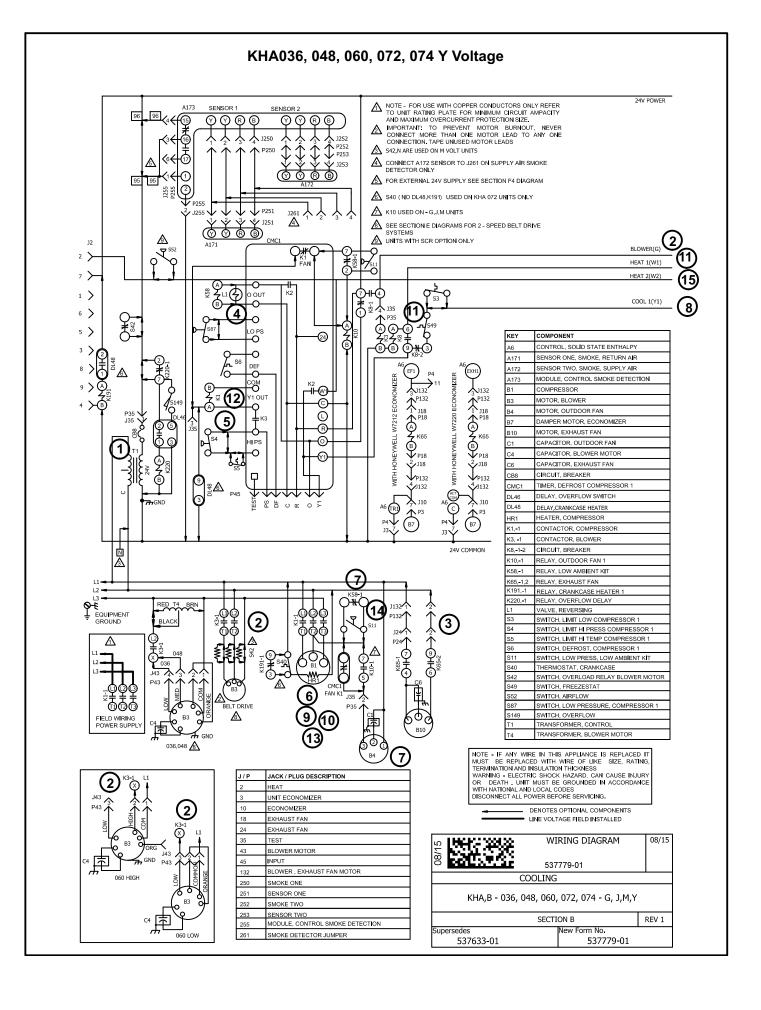
G-Power Exhaust Fans

C1PWRE10A's are available for all units, and provide exhaust air pressure relief and also run when return air dampers are closed and supply air blowers are operating. See figure 21 and installation instructions for more detail.

H-Dirty Filter Switch S27


The dirty filter switch senses static pressure increase indicating a dirty filter condition. The switch is N.O. and closes at 1" W.C. (248.6 Pa) The switch is mounted in the filter section on the left unit mullion.


I-Indoor Air Quality (CO₂) Sensor A63


The indoor air quality sensor monitors CO_2 levels and reports the levels to the economizer enthalpy control A6. Controller A6 adjusts the economizer dampers according to the CO_2 levels. The sensor is mounted next to the indoor thermostat or in the return air duct. Refer to the indoor air quality sensor installation instructions for proper adjustment.

J-Drain Pan Overflow Switch S149 (optional)

The overflow switch is used to interrupt cooling operation when excessive condensate collects in the drain pan. The N.O. overflow switch is controlled by K220 and DL46 relays, located in the unit control panel. When the overflow switch closes, 24VAC power is interrupted and after a five-second delay unit compressors are de-energized. Once the condensate level drops below the set level, the switch will open. After a five-minute delay the compressor will be energized.

SEQUENCE OF OPERATION KHA/KHB024/074

Power:

 Line voltage from unit disconnect energizes transformer T1. T1 provides 24VAC power to terminal strip TB1 found in the control box. TB1 provides 24VAC to the unit cooling, heating and blower controls.

Blower Operation: (See next page for KHB-074)

Indoor thermostat terminal "G" energizes contactor K3. K3 closes, energizing blower B3.

Economizer Operation:

3. The EXH (power exhaust set point) found on the face of A6, is factory set at approximate 50% of the dial range. Economizer control module A6 receives a demand and opens outside dampers 50%. Power exhaust fan relay K65 is energized 30 seconds after dampers are 50% open. K65-1 and K65-2 close, energizing power exhaust fan B10.

Cooling Demand

Cooling demand energizes Y1 and G in the thermostat. G energizes blower (see step 2.)

- 4. Indoor thermostat COOLING mode energizes reversing valve L1.
- 5. CMC1 proves optional N.C. high pressure switch S4 to energize compressor contactor K1.
- 6. K1 closes energizing compressor B1.

7. P and Y Voltage

Line voltage is routed through optional N.O. low ambient pressure switch S11 and optional low ambient kit K58 to energize outdoor fan B4.

G, J and M Voltage

24VAC passes through optional N.O. low pressure switch S11 and optional low ambient kit K58 to energize outdoor fan relay K10. N.O. contacts K10-1 close energizing outdoor fan B4.

KHB-074 Two-Stage Units

- 8. First-stage cooling demand Y1 and G is energized by the thermostat. G energizes blower.
- Following from step 7 K1 energizes compressor B1, outdoor fan B4 and blower B3 on low speed.
- Second-stage cooling demand Y2 energizes compressor
 B1, outdoor fan B3 and blower B4 on high speed.

First Stage Heat

NOTE: On heating demand after unit has been in cooling mode, indoor thermostat in HEATING mode will deenergize reversing valve L1.

- Heating demand energizes W1 in the thermostat. Relay K8 is energized. N.C. K8-1 opens, de-energizing reversing valve L1.
- 12. CMC1 proves optional N.C.high pressure switches S4. Compressor contactor K1 is energized.
- 13. K1 closes energizing compressor B1.

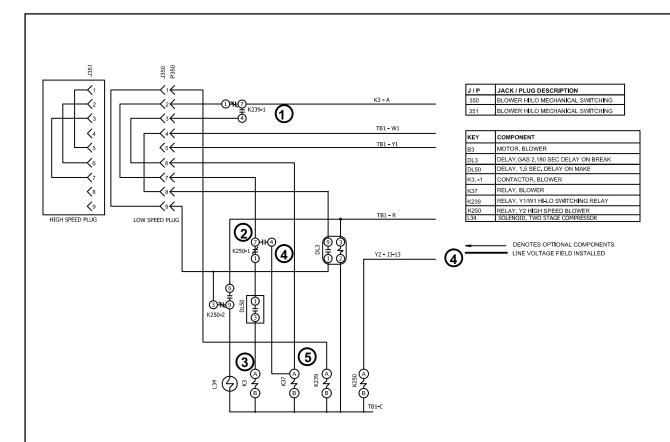
14. P and Y Voltage

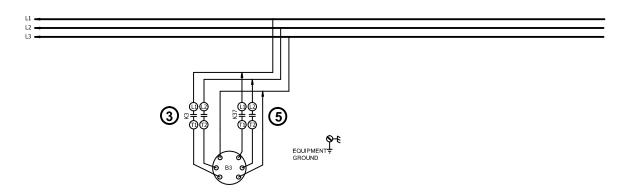
Line voltage from CMC1 is routed through optional N.C. low ambient switch S11 to energize outdoor fan B4.

G, J and M Voltage

24VAC passes through optional N.O. low pressure switch and optional low ambient switch K58 to energize outdoor fan relay K10. K10-1 closes energizing outdoor fan B4.

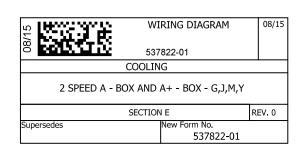
Second Stage Heat (electric heat):

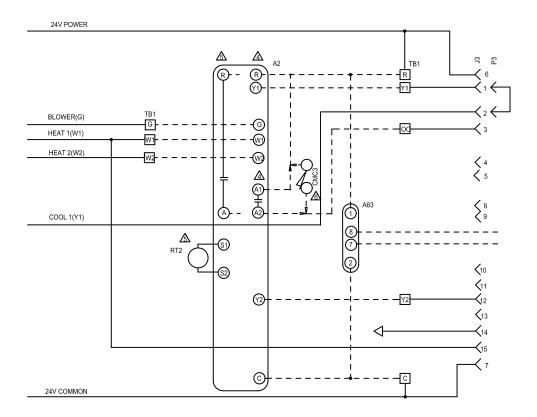

 Second stage heat demand energizes W2 in the thermostat.


See sequence of operation for electric heat.

Defrost Mode:

DEFROST MODE:


16. When a defrost cycle is initiated, the control energizes the reversing valve solenoid and turns off the condenser fan. The control will also put 24VAC on the "W1" (auxiliary heat) line. The unit will stay in this mode until either the defrost thermostat (S6) temperature is above the termination temperature of 70°, the defrost time of 14 minutes has been completed, or the room thermostat demand cycle has been satisfied. If the room thermostat demand cycle terminates the cycle, the defrost cycle will be held until the next room thermostat demand cycle. If the defrost thermostat (S6) temperature is still below the termination temperature, the control will continue the defrost cycle until the cycle is terminated in one of the methods mentioned above.



KHB-074 Two-Stage Units

- 1. **First-stage cooling demand Y1** and G is energized by the thermostat. G energizes blower.
- 2. Relay K239 directs voltage through relay K250 to energize contactor K3.
- 3. Blower contactor K3 energizes blower B3 on low speed.
- 4. **Second-stage cooling demand Y2** energizes relay K250 to redirect voltage to contactor K37
- 5. Contactor K37 energizes blower B3 on high speed.

ELECTRONIC OR ELECTROMECHANICAL THERMOSTAT

KEY	COMPONENT
A2	SENSOR-ELECTRONIC
A63	SENSOR-CO2
CMC3	CLOCK-TIME
J3	JACK-UNIT ECONOMIZER
P3	PLUG-LESS ECONOMIZER
RT2	SENSOR-REMOTE THERMOSTAT
TB1	TERMINAL STRIP-CLASS II VOLTAGE

↑ THERMOSTAT SUPPLIED BY USER

REMOVE P3 WHEN ECONOMIZER IS USED

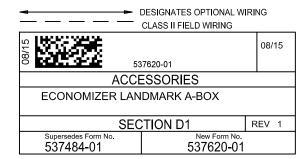
J3 MAXIMUM LOAD 20VA 24VAC CLASS II

↑ T7300 THERMOSTAT

T88220 TOUCHSCREEN THERMOSTAT

TIME CLOCK CONTACTS (OPT) CLOSED OCCUPIED

POWER:


- 1. Terminal strip TB1 found in the main control box supplies thermostat components with 24VAC. **OPERATION:**
- 2. TB1 receives data from the electronic thermostat A2 (Y1, Y2, W1, W2, G) and energizes the appropriate components for heat or cool demand.

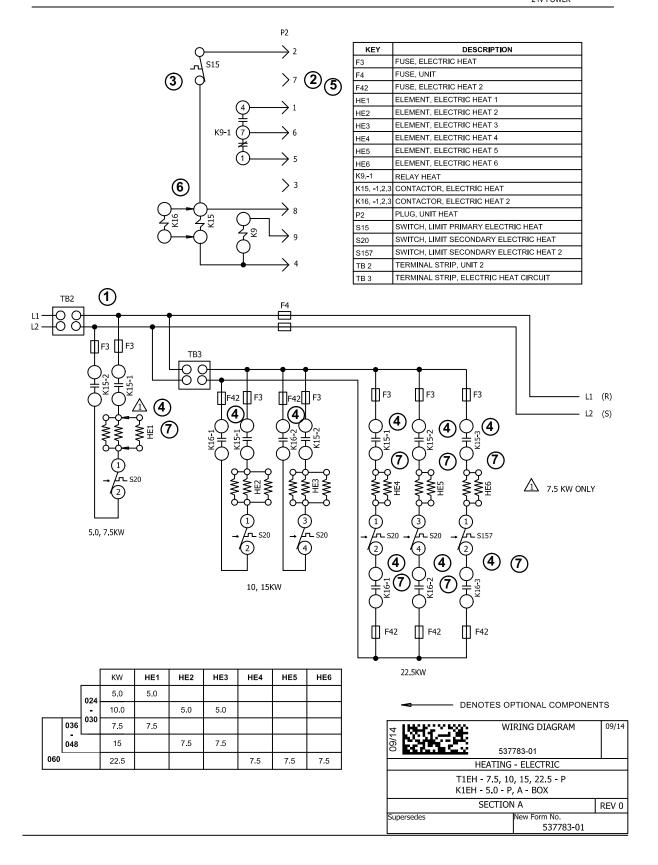
ECONOMIZER

KEY	COMPONENT
A6	CONTROL-SOLID STATE ENTHALPY
A7	SENSOR-SOLID STATE ENTHALPY
A62	SENSOR-ENTHALPY, INDOOR
B7	MOTOR-DAMPER, ECONOMIZER
J10	JACK, ECONOMIZER
P3	PLUG, ECONOMIZER
P4	PLUG-ECONOMIZER
R1	SENSOR-MIXED AIR OR SUPPLY AIR
R2	POT-MINIMUM POSITION
RT26	SENSOR-OUTDOOR AIR TEMP
RT27	SENSOR-INDOOR AIR TEMP
S175	THERMOSTAT, SENSIBLE AIR

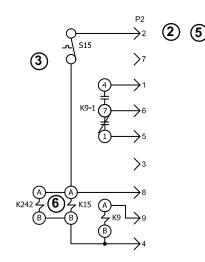
- RT26 AND RT27, TEMPERATURE SENSORS MAY BE USED INSTEAD OF A7 AND A62 ENTHALPY SENSORS
- A62 ENTHALPY SENSOR OR RT27 USED FOR DIFFERENTIAL SENSING
- OPTIONAL OUTDOOR AIR THERMOSTAT TO REPLACE RT26 SENSIBLE SENSOR

SEQUENCE OF OPERATION

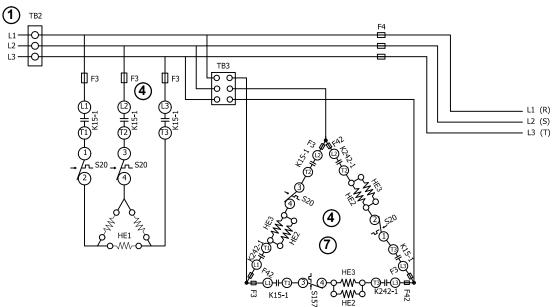
POWER:

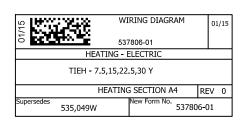

1. Terminal strip TB1 found in the main control panel energizes the economizer components with 24VAC.

OPERATION:

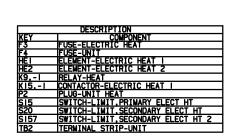

- 2. Enthalpy sensor A7 and A62 (if differential enthalpy is used) communicates to the economizer control module A6 when to power the damper motor B7.
- 3. Economizer control module A6 supplies B7 with 0 10 VDC to control the positioning of economizer.
- 4. The damper actuator provides 2 to 10 VDC position feedback.

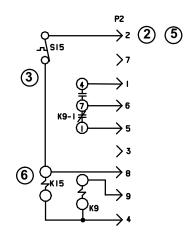
T1EH-7.5, 10, 15, 22.5 kW P VOLTAGE

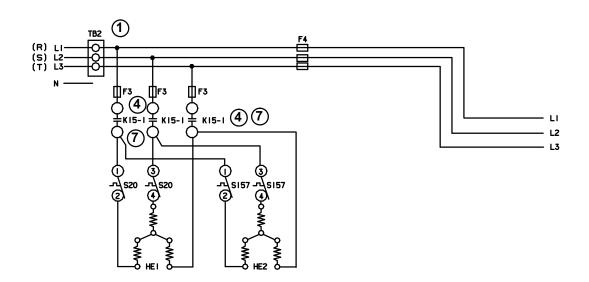

24V POWER

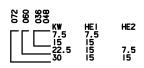

T1EHA-7.5, 15, 22.5kW Y VOLTAGE KHA SERIES UNITS

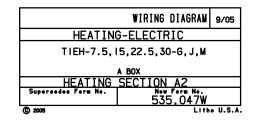
DESCRIPTION					
KEY	KEY DESCRIPTION				
F3	FUSE, ELECTRIC HEAT				
F4	FUSE, UNIT				
F42	FUSE, ELECTRIC HEAT 2				
HE -1	ELEMENT, ELECTRIC HEAT 1				
HE -2	ELEMENT, ELECTRIC HEAT 2				
HE -3	ELEMENT, ELECTRIC HEAT 3				
K9,-1	RELAY - HEAT				
K15,-1	CONTACTOR, ELECTRIC HEAT 1				
K242,-1	CONTACTOR, ELECTRIC HEAT 1				
P2	PLUG, UNIT HEAT				
S15	SWITCH, LIMIT PRIMARY ELECTRIC HEAT				
S20	SWITCH, LIMIT SECONDARY ELECTRIC HEAT 1				
S157	SWITCH, LIMIT SECONDARY ELECTRIC HEAT 2				
TB2	TERMINAL STRIP, UNIT				
TB3	TERMINAL STRIP - ELECTRIC HEAT , CIRC 1				




			KW	HE1	HE2	HE3
072	090	036 048	7.5	7.5		
			15	15		
			22.5		15	7.5
			30		15	15




T1EHA-7.5, 15, 22.5kW G, J VOLTAGE KHA SERIES UNITS


24V POWER

Sequence of Operation -T1EH 7.5, 10, 15, 22.5- P Voltage

HEATING ELEMENTS:

1 - Terminal Strip TB2 is energized when the unit disconnect closes. TB2 supplies line voltage to electric heat elements HE1 and TB3. TB3 supplies line voltage to HE2 through HE6. Elements are protected by fuses F3 and F42.

FIRST STAGE HEAT:

- 2 Heating demand initiates at W1 in thermostat.
- 3 24VAC is routed from the indoor thermostat through N.C. primary limit S15. Electric heat contactor K15 and heat relay K9 are energized. K9 energizes blower contactor K3 and economizer.
- 4 7.5kW units N.O. contacts K15-1 close energizing HE1.

10 kW 15 kW units - K15-1, K16-1, K15-2 and K16-2 close energizing HE2 and HE3.

22.5kW units - K15-1, K15-2, K15-3, K16-1, K16-2, K16-3 close energizing HE4, HE5 and HE6.

END OF FIRST STAGE HEAT:

- 5 Heating demand is satisfied. Terminal W1 in the thermostat is de-energized.
- 6 Electric heat contactor K15 is de-energized.
- 7 7.5kW units N.O. contacts K15-1, open de-energizing HE1.

15kW units - K15-1, K15-2, K16-1, K16-2 open de-energizing HE2 and HE3.

22.5kW units - K15-1, K15-2, K15-3, K16-1, K16-2 and K16-3 open de-energizing HE4, HE5 and HE6.

Sequence of Operation -T1EH 7.5, 15, 22.5, 30 kW - G, J and M Voltage

HEATING ELEMENTS:

1 - Terminal Strip TB2 is energized when the unit disconnect closes. TB2 supplies line voltage to electric heat elements HE1 and TB3. TB3 supplies line voltage to HE2 and HE3. Elements are protected by fuses F3 and or F42.

FIRST STAGE HEAT:

- 2 Heating demand initiates at W1 in thermostat.
- 3 24VAC is routed from the indoor thermostat through N.C. primary limit S15. Electric heat contactor K15 and heat relay K9 are energized. Heat relay K9 energizes blower contactor K3 and economizer.
- 4 7.5kW and 15kW units N.O. contacts K15-1 close energizing HE1.
 - 22.5kW and 30kW units N.O. contacts K15-01 close energizing HE2 and HE3.

END OF FIRST STAGE HEAT:

- 5 Heating demand is satisfied. Terminal W1 in the thermostat is de-energized.
- 6 Electric heat contactor K15 is de-energized.
- 7 7.5kW and 15kW units N.O. contacts K15-1 open deenergizing HE1.
 - 22.5kW and 30kW units N.O. contacts K15-01 open de-energizing HE2 and HE3.

Sequence of Operation -T1EH 7.5, 15, 22.5, 30 kW - Y Voltage

HEATING ELEMENTS:

1 - Terminal Strip TB2 is energized when the unit disconnect closes. TB2 supplies line voltage to electric heat elements HE1 and TB3. TB3 supplies line voltage to HE2 and HE3. Elements are protected by fuses F3 and or F42.

FIRST STAGE HEAT:

- 2 Heating demand initiates at W1 in thermostat.
- 3 24VAC is routed from the indoor thermostat through N.C. primary limit S15. Electric heat contactor K15 and heat relay K9 are energized. Heat relay K9 energizes blower contactor K3 and economizer.

- 4 7.5kW and 15kW units N.O. contacts K15-1 close energizing HE1.
 - 22.5kW and 30kW units N.O. contacts K242-1 close energizing HE2 and HE3.

END OF FIRST STAGE HEAT:

- 5 Heating demand is satisfied. Terminal W1 in the thermostat is de-energized.
- 6 Electric heat contactor K15 is de-energized.
- 7 7.5kW and 15kW units N.O. contacts K15-1 open deenergizing HE1.
 - 22.5kW and 30kW units N.O. contacts K242-1 open de-energizing HE2 and HE3.